summaryrefslogtreecommitdiff
path: root/compiler
diff options
context:
space:
mode:
authorSimon Peyton Jones <simonpj@microsoft.com>2013-01-17 10:54:07 +0000
committerSimon Peyton Jones <simonpj@microsoft.com>2013-01-17 10:54:07 +0000
commit0831a12ea2fc73c33652eeec1adc79fa19700578 (patch)
tree6382f3cd4cb7070d101e22d7de2876aa8cbbbc39 /compiler
parentaef38d130b0ff74b0a5f2478be985e96b40c0f97 (diff)
downloadhaskell-0831a12ea2fc73c33652eeec1adc79fa19700578.tar.gz
Major patch to implement the new Demand Analyser
This patch is the result of Ilya Sergey's internship at MSR. It constitutes a thorough overhaul and simplification of the demand analyser. It makes a solid foundation on which we can now build. Main changes are * Instead of having one combined type for Demand, a Demand is now a pair (JointDmd) of - a StrDmd and - an AbsDmd. This allows strictness and absence to be though about quite orthogonally, and greatly reduces brain melt-down. * Similarly in the DmdResult type, it's a pair of - a PureResult (indicating only divergence/non-divergence) - a CPRResult (which deals only with the CPR property * In IdInfo, the strictnessInfo field contains a StrictSig, not a Maybe StrictSig demandInfo field contains a Demand, not a Maybe Demand We don't need Nothing (to indicate no strictness/demand info) any more; topSig/topDmd will do. * Remove "boxity" analysis entirely. This was an attempt to avoid "reboxing", but it added complexity, is extremely ad-hoc, and makes very little difference in practice. * Remove the "unboxing strategy" computation. This was an an attempt to ensure that a worker didn't get zillions of arguments by unboxing big tuples. But in fact removing it DRAMATICALLY reduces allocation in an inner loop of the I/O library (where the threshold argument-count had been set just too low). It's exceptional to have a zillion arguments and I don't think it's worth the complexity, especially since it turned out to have a serious performance hit. * Remove quite a bit of ad-hoc cruft * Move worthSplittingFun, worthSplittingThunk from WorkWrap to Demand. This allows JointDmd to be fully abstract, examined only inside Demand. Everything else really follows from these changes. All of this is really just refactoring, so we don't expect big performance changes, but acutally the numbers look quite good. Here is a full nofib run with some highlights identified: Program Size Allocs Runtime Elapsed TotalMem -------------------------------------------------------------------------------- expert -2.6% -15.5% 0.00 0.00 +0.0% fluid -2.4% -7.1% 0.01 0.01 +0.0% gg -2.5% -28.9% 0.02 0.02 -33.3% integrate -2.6% +3.2% +2.6% +2.6% +0.0% mandel2 -2.6% +4.2% 0.01 0.01 +0.0% nucleic2 -2.0% -16.3% 0.11 0.11 +0.0% para -2.6% -20.0% -11.8% -11.7% +0.0% parser -2.5% -17.9% 0.05 0.05 +0.0% prolog -2.6% -13.0% 0.00 0.00 +0.0% puzzle -2.6% +2.2% +0.8% +0.8% +0.0% sorting -2.6% -35.9% 0.00 0.00 +0.0% treejoin -2.6% -52.2% -9.8% -9.9% +0.0% -------------------------------------------------------------------------------- Min -2.7% -52.2% -11.8% -11.7% -33.3% Max -1.8% +4.2% +10.5% +10.5% +7.7% Geometric Mean -2.5% -2.8% -0.4% -0.5% -0.4% Things to note * Binary sizes are smaller. I don't know why, but it's good. * Allocation is sometiemes a *lot* smaller. I believe that all the big numbers (I checked treejoin, gg, sorting) arise from one place, namely a function GHC.IO.Encoding.UTF8.utf8_decode, which is strict in two Buffers both of which have several arugments. Not w/w'ing both arguments (which is what we did before) has a big effect. So the big win in actually somewhat accidental, gained by removing the "unboxing strategy" code. * A couple of benchmarks allocate slightly more. This turns out to be due to reboxing (integrate). But the biggest increase is mandel2, and *that* turned out also to be a somewhat accidental loss of CSE, and pointed the way to doing better CSE: see Trac #7596. * Runtimes are never very reliable, but seem to improve very slightly. All in all, a good piece of work. Thank you Ilya!
Diffstat (limited to 'compiler')
-rw-r--r--compiler/basicTypes/Demand.lhs1229
-rw-r--r--compiler/basicTypes/Id.lhs65
-rw-r--r--compiler/basicTypes/IdInfo.lhs54
-rw-r--r--compiler/basicTypes/MkId.lhs45
-rw-r--r--compiler/coreSyn/CoreArity.lhs8
-rw-r--r--compiler/coreSyn/CoreLint.lhs7
-rw-r--r--compiler/coreSyn/CorePrep.lhs24
-rw-r--r--compiler/coreSyn/CoreTidy.lhs4
-rw-r--r--compiler/coreSyn/MkCore.lhs11
-rw-r--r--compiler/coreSyn/PprCore.lhs12
-rw-r--r--compiler/iface/BinIface.hs100
-rw-r--r--compiler/iface/IfaceSyn.lhs22
-rw-r--r--compiler/iface/MkIface.lhs8
-rw-r--r--compiler/iface/TcIface.lhs22
-rw-r--r--compiler/main/TidyPgm.lhs28
-rw-r--r--compiler/prelude/primops.txt.pp10
-rw-r--r--compiler/simplCore/FloatOut.lhs8
-rw-r--r--compiler/simplCore/SetLevels.lhs23
-rw-r--r--compiler/simplCore/SimplCore.lhs21
-rw-r--r--compiler/simplCore/Simplify.lhs5
-rw-r--r--compiler/specialise/SpecConstr.lhs30
-rw-r--r--compiler/stranal/DmdAnal.lhs1077
-rw-r--r--compiler/stranal/WorkWrap.lhs58
-rw-r--r--compiler/stranal/WwLib.lhs131
24 files changed, 1658 insertions, 1344 deletions
diff --git a/compiler/basicTypes/Demand.lhs b/compiler/basicTypes/Demand.lhs
index bd3638a093..ad778d16ad 100644
--- a/compiler/basicTypes/Demand.lhs
+++ b/compiler/basicTypes/Demand.lhs
@@ -2,259 +2,864 @@
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
-\section[Demand]{@Demand@: the amount of demand on a value}
+\section[Demand]{@Demand@: A decoupled implementation of a demand domain}
\begin{code}
-{-# OPTIONS -fno-warn-tabs #-}
--- The above warning supression flag is a temporary kludge.
--- While working on this module you are encouraged to remove it and
--- detab the module (please do the detabbing in a separate patch). See
--- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
--- for details
-
-module Demand(
- Demand(..),
- topDmd, lazyDmd, seqDmd, evalDmd, errDmd, isStrictDmd,
- isTop, isAbsent, seqDemand,
-
- DmdType(..), topDmdType, botDmdType, mkDmdType, mkTopDmdType,
- dmdTypeDepth, seqDmdType,
- DmdEnv, emptyDmdEnv,
- DmdResult(..), retCPR, isBotRes, returnsCPR, resTypeArgDmd,
-
- Demands(..), mapDmds, zipWithDmds, allTop, seqDemands,
-
- StrictSig(..), mkStrictSig, topSig, botSig, cprSig,
- isTopSig,
- splitStrictSig, increaseStrictSigArity,
- pprIfaceStrictSig, appIsBottom, isBottomingSig, seqStrictSig,
+
+module Demand (
+ StrDmd, strBot, strTop, strStr, strProd, strCall,
+ AbsDmd, absBot, absTop, absProd,
+
+ Demand, JointDmd, mkProdDmd,
+ absDmd, topDmd, botDmd,
+ lubDmd, bothDmd,
+ isTopDmd, isBotDmd, isAbsDmd, isSeqDmd,
+
+ DmdType(..), dmdTypeDepth, lubDmdType, bothDmdType,
+ topDmdType, botDmdType, mkDmdType, mkTopDmdType,
+
+ DmdEnv, emptyDmdEnv,
+
+ DmdResult, CPRResult, PureResult,
+ isBotRes, isTopRes, resTypeArgDmd,
+ topRes, botRes, cprRes,
+ appIsBottom, isBottomingSig, pprIfaceStrictSig, returnsCPR,
+ StrictSig(..), mkStrictSig, topSig, botSig, cprSig,
+ isTopSig, splitStrictSig, increaseStrictSigArity,
+
+ seqStrDmd, seqStrDmdList, seqAbsDmd, seqAbsDmdList,
+ seqDemand, seqDemandList, seqDmdType, seqStrictSig,
+ evalDmd, vanillaCall, isStrictDmd, splitCallDmd, splitDmdTy,
+ someCompUsed, isUsed, isUsedDmd,
+ defer, deferType, deferEnv, modifyEnv,
+
+ isProdDmd, splitProdDmd, splitProdDmd_maybe, peelCallDmd, mkCallDmd,
+ dmdTransformSig, dmdTransformDataConSig,
+
+ worthSplittingFun, worthSplittingThunk
) where
#include "HsVersions.h"
import StaticFlags
-import BasicTypes
+import Outputable
import VarEnv
import UniqFM
import Util
-import Outputable
+import BasicTypes
+import Binary
+import Maybes ( expectJust )
+\end{code}
+
+%************************************************************************
+%* *
+\subsection{Lattice-like structure for domains}
+%* *
+%************************************************************************
+
+\begin{code}
+
+class LatticeLike a where
+ bot :: a
+ top :: a
+ pre :: a -> a -> Bool
+ lub :: a -> a -> a
+ both :: a -> a -> a
+
+-- False < True
+instance LatticeLike Bool where
+ bot = False
+ top = True
+-- x `pre` y <==> (x => y)
+ pre x y = (not x) || y
+ lub = (||)
+ both = (&&)
+
\end{code}
%************************************************************************
-%* *
-\subsection{Demands}
-%* *
+%* *
+\subsection{Strictness domain}
+%* *
%************************************************************************
\begin{code}
-data Demand
- = Top -- T; used for unlifted types too, so that
- -- A `lub` T = T
- | Abs -- A
-
- | Call Demand -- C(d)
-
- | Eval Demands -- U(ds)
-
- | Defer Demands -- D(ds)
-
- | Box Demand -- B(d)
-
- | Bot -- B
- deriving( Eq )
- -- Equality needed for fixpoints in DmdAnal
-
-data Demands = Poly Demand -- Polymorphic case
- | Prod [Demand] -- Product case
- deriving( Eq )
-
-allTop :: Demands -> Bool
-allTop (Poly d) = isTop d
-allTop (Prod ds) = all isTop ds
-
-isTop :: Demand -> Bool
-isTop Top = True
-isTop _ = False
-
-isAbsent :: Demand -> Bool
-isAbsent Abs = True
-isAbsent _ = False
-
-mapDmds :: (Demand -> Demand) -> Demands -> Demands
-mapDmds f (Poly d) = Poly (f d)
-mapDmds f (Prod ds) = Prod (map f ds)
-
-zipWithDmds :: (Demand -> Demand -> Demand)
- -> Demands -> Demands -> Demands
-zipWithDmds f (Poly d1) (Poly d2) = Poly (d1 `f` d2)
-zipWithDmds f (Prod ds1) (Poly d2) = Prod [d1 `f` d2 | d1 <- ds1]
-zipWithDmds f (Poly d1) (Prod ds2) = Prod [d1 `f` d2 | d2 <- ds2]
-zipWithDmds f (Prod ds1) (Prod ds2)
- | length ds1 == length ds2 = Prod (zipWithEqual "zipWithDmds" f ds1 ds2)
- | otherwise = Poly topDmd
- -- This really can happen with polymorphism
- -- \f. case f x of (a,b) -> ...
- -- case f y of (a,b,c) -> ...
- -- Here the two demands on f are C(LL) and C(LLL)!
-
-topDmd, lazyDmd, seqDmd, evalDmd, errDmd :: Demand
-topDmd = Top -- The most uninformative demand
-lazyDmd = Box Abs
-seqDmd = Eval (Poly Abs) -- Polymorphic seq demand
-evalDmd = Box seqDmd -- Evaluate and return
-errDmd = Box Bot -- This used to be called X
-isStrictDmd :: Demand -> Bool
-isStrictDmd Bot = True
-isStrictDmd (Eval _) = True
-isStrictDmd (Call _) = True
-isStrictDmd (Box d) = isStrictDmd d
-isStrictDmd _ = False
-
-seqDemand :: Demand -> ()
-seqDemand (Call d) = seqDemand d
-seqDemand (Eval ds) = seqDemands ds
-seqDemand (Defer ds) = seqDemands ds
-seqDemand (Box d) = seqDemand d
-seqDemand _ = ()
-
-seqDemands :: Demands -> ()
-seqDemands (Poly d) = seqDemand d
-seqDemands (Prod ds) = seqDemandList ds
-
-seqDemandList :: [Demand] -> ()
+-- Vanilla strictness domain
+data StrDmd
+ = HyperStr -- Hyper-strict
+ -- Bottom of the lattice
+
+ | SCall StrDmd -- Call demand
+ -- Used only for values of function type
+
+ | SProd [StrDmd] -- Product
+ -- Used only for values of product type
+ -- Invariant: not all components are HyperStr (use HyperStr)
+ -- not all components are Lazy (use Str)
+
+ | Str -- Head-Strict
+ -- A polymorphic demand: used for values of all types,
+ -- including a type variable
+
+ | Lazy -- Lazy
+ -- Top of the lattice
+ deriving ( Eq, Show )
+
+-- Well-formedness preserving constructors for the Strictness domain
+strBot, strTop, strStr :: StrDmd
+strBot = HyperStr
+strTop = Lazy
+strStr = Str
+
+strCall :: StrDmd -> StrDmd
+strCall Lazy = Lazy
+strCall HyperStr = HyperStr
+strCall s = SCall s
+
+strProd :: [StrDmd] -> StrDmd
+strProd sx
+ | any (== HyperStr) sx = strBot
+ | all (== Lazy) sx = strStr
+ | otherwise = SProd sx
+
+-- Pretty-printing
+instance Outputable StrDmd where
+ ppr HyperStr = char 'B'
+ ppr Lazy = char 'L'
+ ppr (SCall s) = char 'C' <> parens (ppr s)
+ ppr Str = char 'S'
+ ppr (SProd sx) = char 'S' <> parens (hcat (map ppr sx))
+
+-- LatticeLike implementation for strictness demands
+instance LatticeLike StrDmd where
+ bot = HyperStr
+ top = Lazy
+
+ pre _ Lazy = True
+ pre HyperStr _ = True
+ pre (SCall s1) (SCall s2) = pre s1 s2
+ pre (SCall _) Str = True
+ pre (SProd _) Str = True
+ pre (SProd sx1) (SProd sx2)
+ | length sx1 == length sx2 = all (== True) $ zipWith pre sx1 sx2
+ pre x y = x == y
+
+ lub x y | x == y = x
+ lub y x | x `pre` y = lub x y
+ lub HyperStr s = s
+ lub _ Lazy = strTop
+ lub (SProd _) Str = strStr
+ lub (SProd sx1) (SProd sx2)
+ | length sx1 == length sx2 = strProd $ zipWith lub sx1 sx2
+ | otherwise = strStr
+ lub (SCall s1) (SCall s2) = strCall (s1 `lub` s2)
+ lub (SCall _) Str = strStr
+ lub _ _ = strTop
+
+ both x y | x == y = x
+ both y x | x `pre` y = both x y
+ both HyperStr _ = strBot
+ both s Lazy = s
+ both s@(SProd _) Str = s
+ both (SProd sx1) (SProd sx2)
+ | length sx1 == length sx2 = strProd $ zipWith both sx1 sx2
+ both (SCall s1) (SCall s2) = strCall (s1 `both` s2)
+ both s@(SCall _) Str = s
+ both _ _ = strBot
+
+-- utility functions to deal with memory leaks
+seqStrDmd :: StrDmd -> ()
+seqStrDmd (SProd ds) = seqStrDmdList ds
+seqStrDmd (SCall s) = s `seq` ()
+seqStrDmd _ = ()
+
+seqStrDmdList :: [StrDmd] -> ()
+seqStrDmdList [] = ()
+seqStrDmdList (d:ds) = seqStrDmd d `seq` seqStrDmdList ds
+
+-- Splitting polymorphic demands
+splitStrProdDmd :: Int -> StrDmd -> [StrDmd]
+splitStrProdDmd n Lazy = replicate n Lazy
+splitStrProdDmd n HyperStr = replicate n HyperStr
+splitStrProdDmd n Str = replicate n Lazy
+splitStrProdDmd n (SProd ds) = ASSERT( ds `lengthIs` n) ds
+splitStrProdDmd n (SCall d) = ASSERT( n == 1 ) [d]
+\end{code}
+
+%************************************************************************
+%* *
+\subsection{Absence domain}
+%* *
+%************************************************************************
+
+Note [Don't optimise UProd(Used) to Used]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+An AbsDmds
+ UProd [Used, Used] and Used
+are semantically equivalent, but we do not turn the former into
+the latter, for a regrettable-subtle reason. Suppose we did.
+then
+ f (x,y) = (y,x)
+would get
+ StrDmd = Str = SProd [Lazy, Lazy]
+ AbsDmd = Used = UProd [Used, Used]
+But with the joint demand of <Str, Used> doesn't convey any clue
+that there is a product involved, and so the worthSplittingFun
+will not fire. (We'd need to use the type as well to make it fire.)
+Moreover, consider
+ g h p@(_,_) = h p
+This too would get <Str, Used>, but this time there really isn't any
+point in w/w since the components of the pair are not used at all.
+
+So the solution is: don't collapse UProd [Used,Used] to Used; intead
+leave it as-is.
+
+
+\begin{code}
+data AbsDmd
+ = Abs -- Definitely unused
+ -- Bottom of the lattice
+
+ | UCall AbsDmd -- Call demand for absence
+ -- Used only for values of function type
+
+ | UProd [AbsDmd] -- Product
+ -- Used only for values of product type
+ -- See Note [Don't optimise UProd(Used) to Used]
+ -- [Invariant] Not all components are Abs
+ -- (in that case, use UHead)
+
+ | UHead -- May be used; but its sub-components are
+ -- definitely *not* used.
+ -- Eg the usage of x in x `seq` e
+ -- A polymorphic demand: used for values of all types,
+ -- including a type variable
+
+ | Used -- May be used; and its sub-components may be used
+ -- Top of the lattice
+ deriving ( Eq, Show )
+
+
+-- Pretty-printing
+instance Outputable AbsDmd where
+ ppr Abs = char 'A'
+ ppr Used = char 'U'
+ ppr (UCall a) = char 'C' <> parens (ppr a)
+ ppr UHead = char 'H'
+ ppr (UProd as) = (char 'U') <> parens (hcat (map ppr as))
+
+-- Well-formedness preserving constructors for the Absence domain
+absBot, absTop, absHead :: AbsDmd
+absBot = Abs
+absHead = UHead
+absTop = Used
+
+absCall :: AbsDmd -> AbsDmd
+absCall Used = Used
+absCall Abs = Abs
+absCall a = UCall a
+
+absProd :: [AbsDmd] -> AbsDmd
+absProd ux
+-- | all (== Used) ux = Used
+ | all (== Abs) ux = UHead
+ | otherwise = UProd ux
+
+instance LatticeLike AbsDmd where
+ bot = absBot
+ top = absTop
+
+ pre Abs _ = True
+ pre _ Used = True
+ pre UHead (UProd _) = True
+ pre (UCall u1) (UCall u2) = pre u1 u2
+ pre (UProd ux1) (UProd ux2)
+ | length ux1 == length ux2 = all (== True) $ zipWith pre ux1 ux2
+ pre x y = x == y
+
+ lub x y | x == y = x
+ lub y x | x `pre` y = lub x y
+ lub Abs a = a
+ lub a Abs = a
+ lub UHead u = u
+ lub u UHead = u
+ lub (UProd ux1) (UProd ux2)
+ | length ux1 == length ux2 = absProd $ zipWith lub ux1 ux2
+ lub (UCall u1) (UCall u2) = absCall (u1 `lub` u2)
+ lub (UProd ds) Used = UProd (map (`lub` Used) ds)
+ lub Used (UProd ds) = UProd (map (`lub` Used) ds)
+ lub _ _ = Used
+
+ both = lub
+
+-- utility functions
+seqAbsDmd :: AbsDmd -> ()
+seqAbsDmd (UProd ds) = seqAbsDmdList ds
+seqAbsDmd (UCall d) = seqAbsDmd d
+seqAbsDmd _ = ()
+
+seqAbsDmdList :: [AbsDmd] -> ()
+seqAbsDmdList [] = ()
+seqAbsDmdList (d:ds) = seqAbsDmd d `seq` seqAbsDmdList ds
+
+-- Splitting polymorphic demands
+splitAbsProdDmd :: Int -> AbsDmd -> [AbsDmd]
+splitAbsProdDmd n Abs = replicate n Abs
+splitAbsProdDmd n Used = replicate n Used
+splitAbsProdDmd n UHead = replicate n Abs
+splitAbsProdDmd n (UProd ds) = ASSERT( ds `lengthIs` n ) ds
+splitAbsProdDmd n (UCall d) = ASSERT( n == 1 ) [d]
+\end{code}
+
+%************************************************************************
+%* *
+\subsection{Joint domain for Strictness and Absence}
+%* *
+%************************************************************************
+
+\begin{code}
+
+data JointDmd = JD { strd :: StrDmd, absd :: AbsDmd }
+ deriving ( Eq, Show )
+
+-- Pretty-printing
+instance Outputable JointDmd where
+ ppr (JD {strd = s, absd = a}) = angleBrackets (ppr s <> char ',' <> ppr a)
+
+-- Well-formedness preserving constructors for the joint domain
+mkJointDmd :: StrDmd -> AbsDmd -> JointDmd
+mkJointDmd s a = JD { strd = s, absd = a }
+-- = case (s, a) of
+-- (HyperStr, UProd _) -> JD {strd = HyperStr, absd = Used}
+-- _ -> JD {strd = s, absd = a}
+
+mkJointDmds :: [StrDmd] -> [AbsDmd] -> [JointDmd]
+mkJointDmds ss as = zipWithEqual "mkJointDmds" mkJointDmd ss as
+
+mkProdDmd :: [JointDmd] -> JointDmd
+mkProdDmd dx
+ = mkJointDmd sp up
+ where
+ sp = strProd $ map strd dx
+ up = absProd $ map absd dx
+
+instance LatticeLike JointDmd where
+ bot = botDmd
+ top = topDmd
+ pre = preDmd
+ lub = lubDmd
+ both = bothDmd
+
+absDmd :: JointDmd
+absDmd = mkJointDmd top bot
+
+topDmd :: JointDmd
+topDmd = mkJointDmd top top
+
+botDmd :: JointDmd
+botDmd = mkJointDmd bot bot
+
+preDmd :: JointDmd -> JointDmd -> Bool
+preDmd (JD {strd = s1, absd = a1})
+ (JD {strd = s2, absd = a2}) = pre s1 s2 && pre a1 a2
+
+lubDmd :: JointDmd -> JointDmd -> JointDmd
+lubDmd (JD {strd = s1, absd = a1})
+ (JD {strd = s2, absd = a2}) = mkJointDmd (lub s1 s2) (lub a1 a2)
+
+bothDmd :: JointDmd -> JointDmd -> JointDmd
+bothDmd (JD {strd = s1, absd = a1})
+ (JD {strd = s2, absd = a2}) = mkJointDmd (both s1 s2) (both a1 a2)
+
+isTopDmd :: JointDmd -> Bool
+isTopDmd (JD {strd = Lazy, absd = Used}) = True
+isTopDmd _ = False
+
+isBotDmd :: JointDmd -> Bool
+isBotDmd (JD {strd = HyperStr, absd = Abs}) = True
+isBotDmd _ = False
+
+isAbsDmd :: JointDmd -> Bool
+isAbsDmd (JD {absd = Abs}) = True -- The strictness part can be HyperStr
+isAbsDmd _ = False -- for a bottom demand
+
+isSeqDmd :: JointDmd -> Bool
+isSeqDmd (JD {strd=Str, absd=UHead}) = True
+isSeqDmd _ = False
+
+-- More utility functions for strictness
+seqDemand :: JointDmd -> ()
+seqDemand (JD {strd = x, absd = y}) = x `seq` y `seq` ()
+
+seqDemandList :: [JointDmd] -> ()
seqDemandList [] = ()
seqDemandList (d:ds) = seqDemand d `seq` seqDemandList ds
-instance Outputable Demand where
- ppr Top = char 'T'
- ppr Abs = char 'A'
- ppr Bot = char 'B'
-
- ppr (Defer ds) = char 'D' <> ppr ds
- ppr (Eval ds) = char 'U' <> ppr ds
-
- ppr (Box (Eval ds)) = char 'S' <> ppr ds
- ppr (Box Abs) = char 'L'
- ppr (Box Bot) = char 'X'
- ppr d@(Box _) = pprPanic "ppr: Bad boxed demand" (ppr d)
-
- ppr (Call d) = char 'C' <> parens (ppr d)
-
-
-instance Outputable Demands where
- ppr (Poly Abs) = empty
- ppr (Poly d) = parens (ppr d <> char '*')
- ppr (Prod ds) = parens (hcat (map ppr ds))
- -- At one time I printed U(AAA) as U, but that
- -- confuses (Poly Abs) with (Prod AAA), and the
- -- worker/wrapper generation differs slightly for these two
- -- [Reason: in the latter case we can avoid passing the arg;
- -- see notes with WwLib.mkWWstr_one.]
+isStrictDmd :: Demand -> Bool
+isStrictDmd (JD {strd = x}) = x /= top
+
+isUsedDmd :: Demand -> Bool
+isUsedDmd (JD {absd = x}) = x /= bot
+
+isUsed :: AbsDmd -> Bool
+isUsed x = x /= bot
+
+someCompUsed :: AbsDmd -> Bool
+someCompUsed Used = True
+someCompUsed (UProd _) = True
+someCompUsed _ = False
+
+evalDmd :: JointDmd
+-- Evaluated strictly, and used arbitrarily deeply
+evalDmd = mkJointDmd strStr absTop
+
+defer :: Demand -> Demand
+defer (JD {absd = a}) = mkJointDmd top a
+
+-- use :: Demand -> Demand
+-- use (JD {strd = d}) = mkJointDmd d top
\end{code}
+Note [Dealing with call demands]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Call demands are constructed and deconstructed coherently for
+strictness and absence. For instance, the strictness signature for the
+following function
+
+f :: (Int -> (Int, Int)) -> (Int, Bool)
+f g = (snd (g 3), True)
+
+should be: <L,C(U(AU))>m
+
+\begin{code}
+mkCallDmd :: JointDmd -> JointDmd
+mkCallDmd (JD {strd = d, absd = a})
+ = mkJointDmd (strCall d) (absCall a)
+
+peelCallDmd :: JointDmd -> Maybe JointDmd
+-- Exploiting the fact that
+-- on the strictness side C(B) = B
+-- and on the usage side C(U) = U
+peelCallDmd (JD {strd = s, absd = u})
+ | Just s' <- peel_s s
+ , Just u' <- peel_u u
+ = Just $ mkJointDmd s' u'
+ | otherwise
+ = Nothing
+ where
+ peel_s (SCall s) = Just s
+ peel_s HyperStr = Just HyperStr
+ peel_s _ = Nothing
+
+ peel_u (UCall u) = Just u
+ peel_u Used = Just Used
+ peel_u Abs = Just Abs
+ peel_u UHead = Just Abs
+ peel_u _ = Nothing
+
+splitCallDmd :: JointDmd -> (Int, JointDmd)
+splitCallDmd (JD {strd = SCall d, absd = UCall a})
+ = case splitCallDmd (mkJointDmd d a) of
+ (n, r) -> (n + 1, r)
+-- Exploiting the fact that C(U) === U
+splitCallDmd (JD {strd = SCall d, absd = Used})
+ = case splitCallDmd (mkJointDmd d Used) of
+ (n, r) -> (n + 1, r)
+splitCallDmd d = (0, d)
+
+vanillaCall :: Arity -> Demand
+vanillaCall 0 = evalDmd
+vanillaCall n =
+ -- generate S^n (S)
+ let strComp = (iterate strCall strStr) !! n
+ absComp = (iterate absCall absTop) !! n
+ in mkJointDmd strComp absComp
+\end{code}
+
+Note [Replicating polymorphic demands]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Some demands can be considered as polymorphic. Generally, it is
+applicable to such beasts as tops, bottoms as well as Head-Used adn
+Head-stricts demands. For instance,
+
+S ~ S(L, ..., L)
+
+Also, when top or bottom is occurred as a result demand, it in fact
+can be expanded to saturate a callee's arity.
+
+
+\begin{code}
+splitProdDmd :: Int -> Demand -> [Demand]
+-- Split a product demands into its components,
+-- regardless of whether it has juice in it
+-- The demand is not ncessarily strict
+splitProdDmd n (JD {strd=x, absd=y})
+ = mkJointDmds (splitStrProdDmd n x) (splitAbsProdDmd n y)
+
+splitProdDmd_maybe :: Demand -> Maybe [Demand]
+-- Split a product into its components, iff there is any
+-- useful information to be extracted thereby
+-- The demand is not necessarily strict!
+splitProdDmd_maybe JD {strd=SProd sx, absd=UProd ux}
+ = ASSERT( sx `lengthIs` length ux )
+ Just (mkJointDmds sx ux)
+splitProdDmd_maybe JD {strd=SProd sx, absd=u}
+ = Just (mkJointDmds sx (splitAbsProdDmd (length sx) u))
+splitProdDmd_maybe (JD {strd=s, absd=UProd ux})
+ = Just (mkJointDmds (splitStrProdDmd (length ux) s) ux)
+splitProdDmd_maybe _ = Nothing
+
+-- Check whether is a product demand with *some* useful info inside
+-- The demand is not ncessarily strict
+isProdDmd :: Demand -> Bool
+isProdDmd (JD {strd = SProd _}) = True
+isProdDmd (JD {absd = UProd _}) = True
+isProdDmd _ = False
+\end{code}
%************************************************************************
-%* *
-\subsection{Demand types}
-%* *
+%* *
+\subsection{Demand results}
+%* *
%************************************************************************
\begin{code}
-data DmdType = DmdType
- DmdEnv -- Demand on explicitly-mentioned
- -- free variables
- [Demand] -- Demand on arguments
- DmdResult -- Nature of result
- -- IMPORTANT INVARIANT
- -- The default demand on free variables not in the DmdEnv is:
- -- DmdResult = BotRes <=> Bot
- -- DmdResult = TopRes/ResCPR <=> Abs
+------------------------------------------------------------------------
+-- Pure demand result
+------------------------------------------------------------------------
+
+data PureResult = TopRes -- Nothing known, assumed to be just lazy
+ | BotRes -- Diverges or errors
+ deriving( Eq, Show )
+
+instance LatticeLike PureResult where
+ bot = BotRes
+ top = TopRes
+ pre x y = (x == y) || (y == top)
+ lub x y | x == y = x
+ lub _ _ = top
+ both x y | x == y = x
+ both _ _ = bot
+
+
+------------------------------------------------------------------------
+-- Constructed Product Result
+------------------------------------------------------------------------
+
+data CPRResult = NoCPR
+ | RetCPR
+ deriving( Eq, Show )
+
+instance LatticeLike CPRResult where
+ bot = RetCPR
+ top = NoCPR
+ pre x y = (x == y) || (y == top)
+ lub x y | x == y = x
+ lub _ _ = top
+ both x y | x == y = x
+ both _ _ = bot
+
+------------------------------------------------------------------------
+-- Combined demand result --
+------------------------------------------------------------------------
+
+data DmdResult = DR { res :: PureResult, cpr :: CPRResult }
+ deriving ( Eq )
+
+-- TODO rework DmdResult to make it more clear
+instance LatticeLike DmdResult where
+ bot = botRes
+ top = topRes
+
+ pre x _ | x == bot = True
+ pre _ x | x == top = True
+ pre (DR s1 a1) (DR s2 a2) = (pre s1 s2) && (pre a1 a2)
+
+ lub r r' | isBotRes r = r'
+ lub r r' | isBotRes r' = r
+ lub r r'
+ | returnsCPR r && returnsCPR r' = r
+ lub _ _ = top
+
+ both _ r2 | isBotRes r2 = r2
+ both r1 _ = r1
+
+-- Pretty-printing
+instance Outputable DmdResult where
+ ppr (DR {res=TopRes, cpr=RetCPR}) = char 'm' -- DDDr without ambiguity
+ ppr (DR {res=BotRes}) = char 'b'
+ ppr _ = empty -- Keep these distinct from Demand letters
- -- ANOTHER IMPORTANT INVARIANT
- -- The Demands in the argument list are never
- -- Bot, Defer d
- -- Handwavey reason: these don't correspond to calling conventions
- -- See DmdAnal.funArgDemand for details
+mkDmdResult :: PureResult -> CPRResult -> DmdResult
+mkDmdResult BotRes RetCPR = botRes
+mkDmdResult x y = DR {res=x, cpr=y}
+seqDmdResult :: DmdResult -> ()
+seqDmdResult (DR {res=x, cpr=y}) = x `seq` y `seq` ()
--- This guy lets us switch off CPR analysis
+-- [cprRes] lets us switch off CPR analysis
-- by making sure that everything uses TopRes instead of RetCPR
-- Assuming, of course, that they don't mention RetCPR by name.
-- They should onlyu use retCPR
-retCPR :: DmdResult
-retCPR | opt_CprOff = TopRes
- | otherwise = RetCPR
+topRes, botRes, cprRes :: DmdResult
+topRes = mkDmdResult TopRes NoCPR
+botRes = mkDmdResult BotRes NoCPR
+cprRes | opt_CprOff = topRes
+ | otherwise = mkDmdResult TopRes RetCPR
-seqDmdType :: DmdType -> ()
-seqDmdType (DmdType _env ds res) =
- {- ??? env `seq` -} seqDemandList ds `seq` res `seq` ()
+isTopRes :: DmdResult -> Bool
+isTopRes (DR {res=TopRes, cpr=NoCPR}) = True
+isTopRes _ = False
+
+isBotRes :: DmdResult -> Bool
+isBotRes (DR {res=BotRes}) = True
+isBotRes _ = False
+
+returnsCPR :: DmdResult -> Bool
+returnsCPR (DR {res=TopRes, cpr=RetCPR}) = True
+returnsCPR _ = False
+
+resTypeArgDmd :: DmdResult -> Demand
+-- TopRes and BotRes are polymorphic, so that
+-- BotRes === Bot -> BotRes === ...
+-- TopRes === Top -> TopRes === ...
+-- This function makes that concrete
+resTypeArgDmd r | isBotRes r = bot
+resTypeArgDmd _ = top
+\end{code}
+
+%************************************************************************
+%* *
+ Whether a demand justifies a w/w split
+%* *
+%************************************************************************
+
+\begin{code}
+worthSplittingFun :: [Demand] -> DmdResult -> Bool
+ -- True <=> the wrapper would not be an identity function
+worthSplittingFun ds res
+ = any worth_it ds || returnsCPR res
+ -- worthSplitting returns False for an empty list of demands,
+ -- and hence do_strict_ww is False if arity is zero and there is no CPR
+ where
+ -- See Note [Worker-wrapper for bottoming functions]
+ worth_it (JD {strd=HyperStr, absd=a}) = isUsed a -- A Hyper-strict argument, safe to do W/W
+ -- See Note [Worthy functions for Worker-Wrapper split]
+ worth_it (JD {absd=Abs}) = True -- Absent arg
+ worth_it (JD {strd=SProd _}) = True -- Product arg to evaluate
+ worth_it (JD {strd=Str, absd=UProd _}) = True -- Strictly used product arg
+ worth_it (JD {strd=Str, absd=UHead}) = True
+ worth_it _ = False
+
+worthSplittingThunk :: Demand -- Demand on the thunk
+ -> DmdResult -- CPR info for the thunk
+ -> Bool
+worthSplittingThunk dmd res
+ = worth_it dmd || returnsCPR res
+ where
+ -- Split if the thing is unpacked
+ worth_it (JD {strd=SProd _, absd=a}) = someCompUsed a
+ worth_it (JD {strd=Str, absd=UProd _}) = True
+ -- second component points out that at least some of
+ worth_it _ = False
+\end{code}
+
+Note [Worthy functions for Worker-Wrapper split]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+For non-bottoming functions a worker-wrapper transformation takes into
+account several possibilities to decide if the function is worthy for
+splitting:
+
+1. The result is of product type and the function is strict in some
+(or even all) of its arguments. The check that the argument is used is
+more of sanity nature, since strictness implies usage. Example:
+
+f :: (Int, Int) -> Int
+f p = (case p of (a,b) -> a) + 1
+
+should be splitted to
+
+f :: (Int, Int) -> Int
+f p = case p of (a,b) -> $wf a
+
+$wf :: Int -> Int
+$wf a = a + 1
+
+2. Sometimes it also makes sense to perform a WW split if the
+strictness analysis cannot say for sure if the function is strict in
+components of its argument. Then we reason according to the inferred
+usage information: if the function uses its product argument's
+components, the WW split can be beneficial. Example:
+
+g :: Bool -> (Int, Int) -> Int
+g c p = case p of (a,b) ->
+ if c then a else b
+
+The function g is strict in is argument p and lazy in its
+components. However, both components are used in the RHS. The idea is
+since some of the components (both in this case) are used in the
+right-hand side, the product must presumable be taken apart.
+
+Therefore, the WW transform splits the function g to
+
+g :: Bool -> (Int, Int) -> Int
+g c p = case p of (a,b) -> $wg c a b
+
+$wg :: Bool -> Int -> Int -> Int
+$wg c a b = if c then a else b
+
+3. If an argument is absent, it would be silly to pass it to a
+function, hence the worker with reduced arity is generated.
+
+
+Note [Worker-wrapper for bottoming functions]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+We used not to split if the result is bottom.
+[Justification: there's no efficiency to be gained.]
+
+But it's sometimes bad not to make a wrapper. Consider
+ fw = \x# -> let x = I# x# in case e of
+ p1 -> error_fn x
+ p2 -> error_fn x
+ p3 -> the real stuff
+The re-boxing code won't go away unless error_fn gets a wrapper too.
+[We don't do reboxing now, but in general it's better to pass an
+unboxed thing to f, and have it reboxed in the error cases....]
+
+
+%************************************************************************
+%* *
+\subsection{Demand environments and types}
+%* *
+%************************************************************************
+
+\begin{code}
+type Demand = JointDmd
type DmdEnv = VarEnv Demand
-data DmdResult = TopRes -- Nothing known
- | RetCPR -- Returns a constructed product
- | BotRes -- Diverges or errors
- deriving( Eq, Show )
- -- Equality for fixpoints
- -- Show needed for Show in Lex.Token (sigh)
+data DmdType = DmdType
+ DmdEnv -- Demand on explicitly-mentioned
+ -- free variables
+ [Demand] -- Demand on arguments
+ DmdResult -- Nature of result
+\end{code}
+
+Note [Nature of result demand]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+We assume the result in a demand type to be either a top or bottom
+in order to represent the information about demand on the function
+result, imposed by its definition. There are not so many things we
+can say, though.
+
+For instance, one can consider a function
+
+ h = \v -> error "urk"
+
+Taking the definition of strictness, we can easily see that
+
+ h undefined = undefined
+that is, h is strict in v. However, v is not used somehow in the body
+of h How can we know that h is strict in v? In fact, we know it by
+considering a result demand of error and bottom and unleashing it on
+all the variables in scope at a call site (in this case, this is only
+v). We can also consider a case
+
+ h = \v -> f x
+
+where we know that the result of f is not hyper-strict (i.e, it is
+lazy, or top). So, we put the same demand on v, which allow us to
+infer a lazy demand that h puts on v.
+
+Note [Asymmetry of 'both' for DmdType and DmdResult]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+'both' for DmdTypes is *assymetrical*, because there is only one
+result! For example, given (e1 e2), we get a DmdType dt1 for e1, use
+its arg demand to analyse e2 giving dt2, and then do (dt1 `both` dt2).
+
+
+\begin{code}
-- Equality needed for fixpoints in DmdAnal
instance Eq DmdType where
(==) (DmdType fv1 ds1 res1)
(DmdType fv2 ds2 res2) = ufmToList fv1 == ufmToList fv2
- && ds1 == ds2 && res1 == res2
+ && ds1 == ds2 && res1 == res2
+
+instance LatticeLike DmdType where
+ bot = botDmdType
+ top = topDmdType
+ pre = preDmdType
+ lub = lubDmdType
+ both = bothDmdType
+
+preDmdType :: DmdType -> DmdType -> Bool
+preDmdType (DmdType _ ds1 res1) (DmdType _ ds2 res2)
+ = (res1 `pre` res2)
+ && (length ds1 == length ds2)
+ && all (\(x, y) -> x `pre` y) (zip ds1 ds2)
+
+lubDmdType :: DmdType -> DmdType -> DmdType
+lubDmdType (DmdType fv1 ds1 r1) (DmdType fv2 ds2 r2)
+ = DmdType lub_fv2 (lub_ds ds1 ds2) (r1 `lub` r2)
+ where
+ absLub = lub absDmd
+ lub_fv = plusVarEnv_C lub fv1 fv2
+ -- Consider (if x then y else []) with demand V
+ -- Then the first branch gives {y->V} and the second
+ -- *implicitly* has {y->A}. So we must put {y->(V `lub` A)}
+ -- in the result env.
+ lub_fv1 = modifyEnv (not (isBotRes r1)) absLub fv2 fv1 lub_fv
+ lub_fv2 = modifyEnv (not (isBotRes r2)) absLub fv1 fv2 lub_fv1
+ -- lub is the identity for Bot
+
+ -- Extend the shorter argument list to match the longer
+ lub_ds (d1:ds1) (d2:ds2) = lub d1 d2 : lub_ds ds1 ds2
+ lub_ds [] [] = []
+ lub_ds ds1 [] = map (`lub` resTypeArgDmd r2) ds1
+ lub_ds [] ds2 = map (resTypeArgDmd r1 `lub`) ds2
+
+bothDmdType :: DmdType -> DmdType -> DmdType
+bothDmdType (DmdType fv1 ds1 r1) (DmdType fv2 _ r2)
+ -- See Note [Asymmetry of 'both' for DmdType and DmdResult]
+ -- 'both' takes the argument/result info from its *first* arg,
+ -- using its second arg just for its free-var info.
+ -- NB: Don't forget about r2! It might be BotRes, which is
+ -- a bottom demand on all the in-scope variables.
+ = DmdType both_fv2 ds1 (r1 `both` r2)
+ where
+ both_fv = plusVarEnv_C both fv1 fv2
+ both_fv1 = modifyEnv (isBotRes r1) (`both` bot) fv2 fv1 both_fv
+ both_fv2 = modifyEnv (isBotRes r2) (`both` bot) fv1 fv2 both_fv1
+
instance Outputable DmdType where
ppr (DmdType fv ds res)
= hsep [text "DmdType",
- hcat (map ppr ds) <> ppr res,
- if null fv_elts then empty
- else braces (fsep (map pp_elt fv_elts))]
+ hcat (map ppr ds) <> ppr res,
+ if null fv_elts then empty
+ else braces (fsep (map pp_elt fv_elts))]
where
pp_elt (uniq, dmd) = ppr uniq <> text "->" <> ppr dmd
fv_elts = ufmToList fv
-instance Outputable DmdResult where
- ppr TopRes = empty -- Keep these distinct from Demand letters
- ppr RetCPR = char 'm' -- so that we can print strictness sigs as
- ppr BotRes = char 'b' -- dddr
- -- without ambiguity
-
emptyDmdEnv :: VarEnv Demand
emptyDmdEnv = emptyVarEnv
topDmdType, botDmdType, cprDmdType :: DmdType
-topDmdType = DmdType emptyDmdEnv [] TopRes
-botDmdType = DmdType emptyDmdEnv [] BotRes
-cprDmdType = DmdType emptyVarEnv [] retCPR
+topDmdType = DmdType emptyDmdEnv [] topRes
+botDmdType = DmdType emptyDmdEnv [] botRes
+cprDmdType = DmdType emptyDmdEnv [] cprRes
isTopDmdType :: DmdType -> Bool
--- Only used on top-level types, hence the assert
-isTopDmdType (DmdType env [] TopRes) = ASSERT( isEmptyVarEnv env) True
-isTopDmdType _ = False
-
-isBotRes :: DmdResult -> Bool
-isBotRes BotRes = True
-isBotRes _ = False
-
-resTypeArgDmd :: DmdResult -> Demand
--- TopRes and BotRes are polymorphic, so that
--- BotRes = Bot -> BotRes
--- TopRes = Top -> TopRes
--- This function makes that concrete
--- We can get a RetCPR, because of the way in which we are (now)
--- giving CPR info to strict arguments. On the first pass, when
--- nothing has demand info, we optimistically give CPR info or RetCPR to all args
-resTypeArgDmd TopRes = Top
-resTypeArgDmd RetCPR = Top
-resTypeArgDmd BotRes = Bot
-
-returnsCPR :: DmdResult -> Bool
-returnsCPR RetCPR = True
-returnsCPR _ = False
+isTopDmdType (DmdType env [] res)
+ | isTopRes res && isEmptyVarEnv env = True
+isTopDmdType _ = False
mkDmdType :: DmdEnv -> [Demand] -> DmdResult -> DmdType
mkDmdType fv ds res = DmdType fv ds res
@@ -264,43 +869,80 @@ mkTopDmdType ds res = DmdType emptyDmdEnv ds res
dmdTypeDepth :: DmdType -> Arity
dmdTypeDepth (DmdType _ ds _) = length ds
-\end{code}
+seqDmdType :: DmdType -> ()
+seqDmdType (DmdType _env ds res) =
+ {- ??? env `seq` -} seqDemandList ds `seq` seqDmdResult res `seq` ()
+
+splitDmdTy :: DmdType -> (Demand, DmdType)
+-- Split off one function argument
+-- We already have a suitable demand on all
+-- free vars, so no need to add more!
+splitDmdTy (DmdType fv (dmd:dmds) res_ty) = (dmd, DmdType fv dmds res_ty)
+splitDmdTy ty@(DmdType _ [] res_ty) = (resTypeArgDmd res_ty, ty)
+
+deferType :: DmdType -> DmdType
+deferType (DmdType fv _ _) = DmdType (deferEnv fv) [] top
+
+deferEnv :: DmdEnv -> DmdEnv
+deferEnv fv = mapVarEnv defer fv
+
+modifyEnv :: Bool -- No-op if False
+ -> (Demand -> Demand) -- The zapper
+ -> DmdEnv -> DmdEnv -- Env1 and Env2
+ -> DmdEnv -> DmdEnv -- Transform this env
+ -- Zap anything in Env1 but not in Env2
+ -- Assume: dom(env) includes dom(Env1) and dom(Env2)
+modifyEnv need_to_modify zapper env1 env2 env
+ | need_to_modify = foldr zap env (varEnvKeys (env1 `minusUFM` env2))
+ | otherwise = env
+ where
+ zap uniq env = addToUFM_Directly env uniq (zapper current_val)
+ where
+ current_val = expectJust "modifyEnv" (lookupUFM_Directly env uniq)
+
+\end{code}
%************************************************************************
-%* *
-\subsection{Strictness signature
-%* *
+%* *
+ Demand signatures
+%* *
%************************************************************************
In a let-bound Id we record its strictness info.
In principle, this strictness info is a demand transformer, mapping
a demand on the Id into a DmdType, which gives
- a) the free vars of the Id's value
- b) the Id's arguments
- c) an indication of the result of applying
- the Id to its arguments
+ a) the free vars of the Id's value
+ b) the Id's arguments
+ c) an indication of the result of applying
+ the Id to its arguments
However, in fact we store in the Id an extremely emascuated demand transfomer,
namely
- a single DmdType
+ a single DmdType
(Nevertheless we dignify StrictSig as a distinct type.)
This DmdType gives the demands unleashed by the Id when it is applied
to as many arguments as are given in by the arg demands in the DmdType.
+If an Id is applied to less arguments than its arity, it means that
+the demand on the function at a call site is weaker than the vanilla
+call demand, used for signature inference. Therefore we place a top
+demand on all arguments. Otherwise, the demand is specified by Id's
+signature.
+
For example, the demand transformer described by the DmdType
- DmdType {x -> U(LL)} [V,A] Top
+ DmdType {x -> <S(LL),U(UU)>} [V,A] Top
says that when the function is applied to two arguments, it
-unleashes demand U(LL) on the free var x, V on the first arg,
+unleashes demand <S(LL),U(UU)> on the free var x, V on the first arg,
and A on the second.
-If this same function is applied to one arg, all we can say is
-that it uses x with U*(LL), and its arg with demand L.
+If this same function is applied to one arg, all we can say is that it
+uses x with <L,U>, and its arg with demand <L,U>.
\begin{code}
newtype StrictSig = StrictSig DmdType
- deriving( Eq )
+ deriving( Eq )
instance Outputable StrictSig where
ppr (StrictSig ty) = ppr ty
@@ -314,33 +956,180 @@ splitStrictSig (StrictSig (DmdType _ dmds res)) = (dmds, res)
increaseStrictSigArity :: Int -> StrictSig -> StrictSig
-- Add extra arguments to a strictness signature
increaseStrictSigArity arity_increase (StrictSig (DmdType env dmds res))
- = StrictSig (DmdType env (replicate arity_increase topDmd ++ dmds) res)
+ = StrictSig (DmdType env (replicate arity_increase top ++ dmds) res)
isTopSig :: StrictSig -> Bool
isTopSig (StrictSig ty) = isTopDmdType ty
-topSig, botSig, cprSig :: StrictSig
+isBottomingSig :: StrictSig -> Bool
+isBottomingSig (StrictSig (DmdType _ _ res)) = isBotRes res
+
+topSig, botSig, cprSig:: StrictSig
topSig = StrictSig topDmdType
botSig = StrictSig botDmdType
cprSig = StrictSig cprDmdType
-
+
+dmdTransformSig :: StrictSig -> Demand -> DmdType
+-- (dmdTransformSig fun_sig dmd) considers a call to a function whose
+-- signature is fun_sig, with demand dmd. We return the demand
+-- that the function places on its context (eg its args)
+dmdTransformSig (StrictSig dmd_ty@(DmdType _ arg_ds _)) dmd
+ = go arg_ds dmd
+ where
+ go [] dmd
+ | isBotDmd dmd = bot -- Transform bottom demand to bottom type
+ | otherwise = dmd_ty -- Saturated
+ go (_:as) dmd = case peelCallDmd dmd of
+ Just dmd' -> go as dmd'
+ Nothing -> deferType dmd_ty
+ -- NB: it's important to use deferType, and not just return topDmdType
+ -- Consider let { f x y = p + x } in f 1
+ -- The application isn't saturated, but we must nevertheless propagate
+ -- a lazy demand for p!
+
+dmdTransformDataConSig :: Arity -> StrictSig -> Demand -> DmdType
+-- Same as dmdTranformSig but for a data constructor (worker),
+-- which has a special kind of demand transformer.
+-- If the constructor is saturated, we feed the demand on
+-- the result into the constructor arguments.
+dmdTransformDataConSig arity (StrictSig (DmdType _ _ con_res)) dmd
+ = go arity dmd
+ where
+ go 0 dmd = DmdType emptyDmdEnv (splitProdDmd arity dmd) con_res
+ -- Must remember whether it's a product, hence con_res, not TopRes
+ go n dmd = case peelCallDmd dmd of
+ Nothing -> topDmdType
+ Just dmd' -> go (n-1) dmd'
+\end{code}
+
+Note [Non-full application]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+If a function having bottom as its demand result is applied to a less
+number of arguments than its syntactic arity, we cannot say for sure
+that it is going to diverge. This is the reason why we use the
+function appIsBottom, which, given a strictness signature and a number
+of arguments, says conservatively if the function is going to diverge
+or not.
+
+\begin{code}
-- appIsBottom returns true if an application to n args would diverge
appIsBottom :: StrictSig -> Int -> Bool
-appIsBottom (StrictSig (DmdType _ ds BotRes)) n = listLengthCmp ds n /= GT
-appIsBottom _ _ = False
-
-isBottomingSig :: StrictSig -> Bool
-isBottomingSig (StrictSig (DmdType _ _ BotRes)) = True
-isBottomingSig _ = False
+appIsBottom (StrictSig (DmdType _ ds res)) n
+ | isBotRes res = not $ lengthExceeds ds n
+appIsBottom _ _ = False
seqStrictSig :: StrictSig -> ()
seqStrictSig (StrictSig ty) = seqDmdType ty
-pprIfaceStrictSig :: StrictSig -> SDoc
-- Used for printing top-level strictness pragmas in interface files
+pprIfaceStrictSig :: StrictSig -> SDoc
pprIfaceStrictSig (StrictSig (DmdType _ dmds res))
= hcat (map ppr dmds) <> ppr res
\end{code}
-
+
+%************************************************************************
+%* *
+ Serialisation
+%* *
+%************************************************************************
+
+
+\begin{code}
+instance Binary StrDmd where
+ put_ bh HyperStr = do putByte bh 0
+ put_ bh Lazy = do putByte bh 1
+ put_ bh Str = do putByte bh 2
+ put_ bh (SCall s) = do putByte bh 3
+ put_ bh s
+ put_ bh (SProd sx) = do putByte bh 4
+ put_ bh sx
+ get bh = do
+ h <- getByte bh
+ case h of
+ 0 -> do return strBot
+ 1 -> do return strTop
+ 2 -> do return strStr
+ 3 -> do s <- get bh
+ return $ strCall s
+ _ -> do sx <- get bh
+ return $ strProd sx
+
+instance Binary AbsDmd where
+ put_ bh Abs = do
+ putByte bh 0
+ put_ bh Used = do
+ putByte bh 1
+ put_ bh UHead = do
+ putByte bh 2
+ put_ bh (UCall u) = do
+ putByte bh 3
+ put_ bh u
+ put_ bh (UProd ux) = do
+ putByte bh 4
+ put_ bh ux
+
+ get bh = do
+ h <- getByte bh
+ case h of
+ 0 -> return absBot
+ 1 -> return absTop
+ 2 -> return absHead
+ 3 -> do u <- get bh
+ return $ absCall u
+ _ -> do ux <- get bh
+ return $ absProd ux
+
+instance Binary JointDmd where
+ put_ bh (JD {strd = x, absd = y}) = do put_ bh x; put_ bh y
+ get bh = do
+ x <- get bh
+ y <- get bh
+ return $ mkJointDmd x y
+
+instance Binary PureResult where
+ put_ bh BotRes = do putByte bh 0
+ put_ bh TopRes = do putByte bh 1
+
+ get bh = do
+ h <- getByte bh
+ case h of
+ 0 -> return bot
+ _ -> return top
+
+instance Binary StrictSig where
+ put_ bh (StrictSig aa) = do
+ put_ bh aa
+ get bh = do
+ aa <- get bh
+ return (StrictSig aa)
+
+instance Binary DmdType where
+ -- Ignore DmdEnv when spitting out the DmdType
+ put_ bh (DmdType _ ds dr)
+ = do put_ bh ds
+ put_ bh dr
+ get bh
+ = do ds <- get bh
+ dr <- get bh
+ return (DmdType emptyDmdEnv ds dr)
+
+instance Binary CPRResult where
+ put_ bh RetCPR = do putByte bh 0
+ put_ bh NoCPR = do putByte bh 1
+
+ get bh = do
+ h <- getByte bh
+ case h of
+ 0 -> return bot
+ _ -> return top
+
+instance Binary DmdResult where
+ put_ bh (DR {res=x, cpr=y}) = do put_ bh x; put_ bh y
+ get bh = do
+ x <- get bh
+ y <- get bh
+ return $ mkDmdResult x y
+\end{code} \ No newline at end of file
diff --git a/compiler/basicTypes/Id.lhs b/compiler/basicTypes/Id.lhs
index cc7d4c58bb..ccd490f0fb 100644
--- a/compiler/basicTypes/Id.lhs
+++ b/compiler/basicTypes/Id.lhs
@@ -38,15 +38,15 @@ module Id (
recordSelectorFieldLabel,
-- ** Modifying an Id
- setIdName, setIdUnique, Id.setIdType,
- setIdExported, setIdNotExported,
- globaliseId, localiseId,
+ setIdName, setIdUnique, Id.setIdType,
+ setIdExported, setIdNotExported,
+ globaliseId, localiseId,
setIdInfo, lazySetIdInfo, modifyIdInfo, maybeModifyIdInfo,
zapLamIdInfo, zapDemandIdInfo, zapFragileIdInfo, transferPolyIdInfo,
-
+ zapIdStrictness,
-- ** Predicates on Ids
- isImplicitId, isDeadBinder,
+ isImplicitId, isDeadBinder,
isStrictId,
isExportedId, isLocalId, isGlobalId,
isRecordSelector, isNaughtyRecordSelector,
@@ -69,9 +69,7 @@ module Id (
setOneShotLambda, clearOneShotLambda,
-- ** Reading 'IdInfo' fields
- idArity,
- idDemandInfo, idDemandInfo_maybe,
- idStrictness, idStrictness_maybe,
+ idArity,
idUnfolding, realIdUnfolding,
idSpecialisation, idCoreRules, idHasRules,
idCafInfo,
@@ -82,12 +80,17 @@ module Id (
setIdUnfoldingLazily,
setIdUnfolding,
setIdArity,
- setIdDemandInfo,
- setIdStrictness, zapIdStrictness,
+
setIdSpecialisation,
setIdCafInfo,
setIdOccInfo, zapIdOccInfo,
+ setIdDemandInfo,
+ setIdStrictness,
+
+ idDemandInfo,
+ idStrictness,
+
) where
#include "HsVersions.h"
@@ -127,12 +130,14 @@ infixl 1 `setIdUnfoldingLazily`,
`setIdUnfolding`,
`setIdArity`,
`setIdOccInfo`,
- `setIdDemandInfo`,
- `setIdStrictness`,
+
`setIdSpecialisation`,
`setInlinePragma`,
`setInlineActivation`,
- `idCafInfo`
+ `idCafInfo`,
+
+ `setIdDemandInfo`,
+ `setIdStrictness`
\end{code}
%************************************************************************
@@ -464,17 +469,14 @@ idRepArity x = typeRepArity (idArity x) (idType x)
isBottomingId :: Id -> Bool
isBottomingId id = isBottomingSig (idStrictness id)
-idStrictness_maybe :: Id -> Maybe StrictSig
idStrictness :: Id -> StrictSig
-
-idStrictness_maybe id = strictnessInfo (idInfo id)
-idStrictness id = idStrictness_maybe id `orElse` topSig
+idStrictness id = strictnessInfo (idInfo id)
setIdStrictness :: Id -> StrictSig -> Id
-setIdStrictness id sig = modifyIdInfo (`setStrictnessInfo` Just sig) id
+setIdStrictness id sig = modifyIdInfo (`setStrictnessInfo` sig) id
zapIdStrictness :: Id -> Id
-zapIdStrictness id = modifyIdInfo (`setStrictnessInfo` Nothing) id
+zapIdStrictness id = modifyIdInfo (`setStrictnessInfo` topSig) id
-- | This predicate says whether the 'Id' has a strict demand placed on it or
-- has a type such that it can always be evaluated strictly (e.g., an
@@ -485,8 +487,9 @@ zapIdStrictness id = modifyIdInfo (`setStrictnessInfo` Nothing) id
isStrictId :: Id -> Bool
isStrictId id
= ASSERT2( isId id, text "isStrictId: not an id: " <+> ppr id )
- (isStrictDmd (idDemandInfo id)) ||
- (isStrictType (idType id))
+ (isStrictType (idType id)) ||
+ -- Take the best of both strictnesses - old and new
+ (isStrictDmd (idDemandInfo id))
---------------------------------
-- UNFOLDING
@@ -508,14 +511,11 @@ setIdUnfoldingLazily id unfolding = modifyIdInfo (`setUnfoldingInfoLazily` unfol
setIdUnfolding :: Id -> Unfolding -> Id
setIdUnfolding id unfolding = modifyIdInfo (`setUnfoldingInfo` unfolding) id
-idDemandInfo_maybe :: Id -> Maybe Demand
idDemandInfo :: Id -> Demand
-
-idDemandInfo_maybe id = demandInfo (idInfo id)
-idDemandInfo id = demandInfo (idInfo id) `orElse` topDmd
+idDemandInfo id = demandInfo (idInfo id)
setIdDemandInfo :: Id -> Demand -> Id
-setIdDemandInfo id dmd = modifyIdInfo (`setDemandInfo` Just dmd) id
+setIdDemandInfo id dmd = modifyIdInfo (`setDemandInfo` dmd) id
---------------------------------
-- SPECIALISATION
@@ -654,11 +654,11 @@ zapInfo zapper id = maybeModifyIdInfo (zapper (idInfo id)) id
zapLamIdInfo :: Id -> Id
zapLamIdInfo = zapInfo zapLamInfo
+zapFragileIdInfo :: Id -> Id
+zapFragileIdInfo = zapInfo zapFragileInfo
+
zapDemandIdInfo :: Id -> Id
zapDemandIdInfo = zapInfo zapDemandInfo
-
-zapFragileIdInfo :: Id -> Id
-zapFragileIdInfo = zapInfo zapFragileInfo
\end{code}
Note [transferPolyIdInfo]
@@ -725,11 +725,12 @@ transferPolyIdInfo old_id abstract_wrt new_id
old_inline_prag = inlinePragInfo old_info
old_occ_info = occInfo old_info
new_arity = old_arity + arity_increase
+
old_strictness = strictnessInfo old_info
- new_strictness = fmap (increaseStrictSigArity arity_increase) old_strictness
+ new_strictness = increaseStrictSigArity arity_increase old_strictness
- transfer new_info = new_info `setStrictnessInfo` new_strictness
- `setArityInfo` new_arity
+ transfer new_info = new_info `setArityInfo` new_arity
`setInlinePragInfo` old_inline_prag
`setOccInfo` old_occ_info
+ `setStrictnessInfo` new_strictness
\end{code}
diff --git a/compiler/basicTypes/IdInfo.lhs b/compiler/basicTypes/IdInfo.lhs
index 1d777895e4..0107e411d0 100644
--- a/compiler/basicTypes/IdInfo.lhs
+++ b/compiler/basicTypes/IdInfo.lhs
@@ -25,7 +25,9 @@ module IdInfo (
seqIdInfo, megaSeqIdInfo,
-- ** Zapping various forms of Info
- zapLamInfo, zapDemandInfo, zapFragileInfo,
+ zapLamInfo, zapFragileInfo,
+
+ zapDemandInfo,
-- ** The ArityInfo type
ArityInfo,
@@ -82,12 +84,10 @@ import BasicTypes
import DataCon
import TyCon
import ForeignCall
-import Demand
import Outputable
import Module
import FastString
-
-import Data.Maybe
+import Demand
-- infixl so you can say (id `set` a `set` b)
infixl 1 `setSpecInfo`,
@@ -203,14 +203,10 @@ data IdInfo
inlinePragInfo :: InlinePragma, -- ^ Any inline pragma atached to the 'Id'
occInfo :: OccInfo, -- ^ How the 'Id' occurs in the program
- strictnessInfo :: Maybe StrictSig, -- ^ Id strictness information. Reason for Maybe:
- -- the DmdAnal phase needs to know whether
- -- this is the first visit, so it can assign botSig.
- -- Other customers want topSig. So @Nothing@ is good.
+ strictnessInfo :: StrictSig, -- ^ A strictness signature
+
+ demandInfo :: Demand -- ^ ID demand information
- demandInfo :: Maybe Demand -- ^ Id demand information. Similarly we want to know
- -- if there's no known demand yet, for when we are looking
- -- for CPR info
}
-- | Just evaluate the 'IdInfo' to WHNF
@@ -227,20 +223,18 @@ megaSeqIdInfo info
-- some unfoldings are not calculated at all
-- seqUnfolding (unfoldingInfo info) `seq`
- seqDemandInfo (demandInfo info) `seq`
+ seqDemandInfo (demandInfo info) `seq`
seqStrictnessInfo (strictnessInfo info) `seq`
seqCaf (cafInfo info) `seq`
seqLBVar (lbvarInfo info) `seq`
seqOccInfo (occInfo info)
-seqStrictnessInfo :: Maybe StrictSig -> ()
-seqStrictnessInfo Nothing = ()
-seqStrictnessInfo (Just ty) = seqStrictSig ty
+seqStrictnessInfo :: StrictSig -> ()
+seqStrictnessInfo ty = seqStrictSig ty
-seqDemandInfo :: Maybe Demand -> ()
-seqDemandInfo Nothing = ()
-seqDemandInfo (Just dmd) = seqDemand dmd
+seqDemandInfo :: Demand -> ()
+seqDemandInfo dmd = seqDemand dmd
\end{code}
Setters
@@ -275,10 +269,10 @@ setCafInfo info caf = info { cafInfo = caf }
setLBVarInfo :: IdInfo -> LBVarInfo -> IdInfo
setLBVarInfo info lb = {-lb `seq`-} info { lbvarInfo = lb }
-setDemandInfo :: IdInfo -> Maybe Demand -> IdInfo
-setDemandInfo info dd = dd `seq` info { demandInfo = dd }
+setDemandInfo :: IdInfo -> Demand -> IdInfo
+setDemandInfo info dd = dd `seq` info { demandInfo = dd }
-setStrictnessInfo :: IdInfo -> Maybe StrictSig -> IdInfo
+setStrictnessInfo :: IdInfo -> StrictSig -> IdInfo
setStrictnessInfo info dd = dd `seq` info { strictnessInfo = dd }
\end{code}
@@ -295,8 +289,8 @@ vanillaIdInfo
lbvarInfo = NoLBVarInfo,
inlinePragInfo = defaultInlinePragma,
occInfo = NoOccInfo,
- demandInfo = Nothing,
- strictnessInfo = Nothing
+ demandInfo = topDmd,
+ strictnessInfo = topSig
}
-- | More informative 'IdInfo' we can use when we know the 'Id' has no CAF references
@@ -363,9 +357,8 @@ type InlinePragInfo = InlinePragma
%************************************************************************
\begin{code}
-pprStrictness :: Maybe StrictSig -> SDoc
-pprStrictness Nothing = empty
-pprStrictness (Just sig) = ppr sig
+pprStrictness :: StrictSig -> SDoc
+pprStrictness sig = ppr sig
\end{code}
@@ -524,7 +517,7 @@ zapLamInfo info@(IdInfo {occInfo = occ, demandInfo = demand})
| is_safe_occ occ && is_safe_dmd demand
= Nothing
| otherwise
- = Just (info {occInfo = safe_occ, demandInfo = Nothing})
+ = Just (info {occInfo = safe_occ, demandInfo = topDmd})
where
-- The "unsafe" occ info is the ones that say I'm not in a lambda
-- because that might not be true for an unsaturated lambda
@@ -535,16 +528,13 @@ zapLamInfo info@(IdInfo {occInfo = occ, demandInfo = demand})
OneOcc _ once int_cxt -> OneOcc insideLam once int_cxt
_other -> occ
- is_safe_dmd Nothing = True
- is_safe_dmd (Just dmd) = not (isStrictDmd dmd)
+ is_safe_dmd dmd = not (isStrictDmd dmd)
\end{code}
\begin{code}
-- | Remove demand info on the 'IdInfo' if it is present, otherwise return @Nothing@
zapDemandInfo :: IdInfo -> Maybe IdInfo
-zapDemandInfo info@(IdInfo {demandInfo = dmd})
- | isJust dmd = Just (info {demandInfo = Nothing})
- | otherwise = Nothing
+zapDemandInfo info = Just (info {demandInfo = topDmd})
\end{code}
\begin{code}
diff --git a/compiler/basicTypes/MkId.lhs b/compiler/basicTypes/MkId.lhs
index e599503da9..3fdf86dd02 100644
--- a/compiler/basicTypes/MkId.lhs
+++ b/compiler/basicTypes/MkId.lhs
@@ -230,7 +230,6 @@ Hence we translate to
-- Coercion from family type to representation type
Co7T a :: T [a] ~ :R7T a
-
Note [Newtype datacons]
~~~~~~~~~~~~~~~~~~~~~~~
The "data constructor" for a newtype should always be vanilla. At one
@@ -286,10 +285,10 @@ mkDictSelId dflags no_unf name clas
-- to get (say) C a -> (a -> a)
base_info = noCafIdInfo
- `setArityInfo` 1
- `setStrictnessInfo` Just strict_sig
- `setUnfoldingInfo` (if no_unf then noUnfolding
- else mkImplicitUnfolding dflags rhs)
+ `setArityInfo` 1
+ `setStrictnessInfo` strict_sig
+ `setUnfoldingInfo` (if no_unf then noUnfolding
+ else mkImplicitUnfolding dflags rhs)
-- In module where class op is defined, we must add
-- the unfolding, even though it'll never be inlined
-- becuase we use that to generate a top-level binding
@@ -318,10 +317,12 @@ mkDictSelId dflags no_unf name clas
-- where the V depends on which item we are selecting
-- It's worth giving one, so that absence info etc is generated
-- even if the selector isn't inlined
- strict_sig = mkStrictSig (mkTopDmdType [arg_dmd] TopRes)
+
+ strict_sig = mkStrictSig (mkTopDmdType [arg_dmd] topRes)
arg_dmd | new_tycon = evalDmd
- | otherwise = Eval (Prod [ if the_arg_id == id then evalDmd else Abs
- | id <- arg_ids ])
+ | otherwise = mkProdDmd [ if the_arg_id == id then evalDmd else absDmd
+ | id <- arg_ids ]
+
tycon = classTyCon clas
new_tycon = isNewTyCon tycon
@@ -384,7 +385,7 @@ mkDataConWorkId wkr_name data_con
wkr_arity = dataConRepArity data_con
wkr_info = noCafIdInfo
`setArityInfo` wkr_arity
- `setStrictnessInfo` Just wkr_sig
+ `setStrictnessInfo` wkr_sig
`setUnfoldingInfo` evaldUnfolding -- Record that it's evaluated,
-- even if arity = 0
@@ -428,9 +429,9 @@ dataConCPR con
, isDataTyCon tycon
, wkr_arity > 0
, wkr_arity <= mAX_CPR_SIZE
- = retCPR
+ = cprRes
| otherwise
- = TopRes
+ = topRes
-- RetCPR is only true for products that are real data types;
-- that is, not unboxed tuples or [non-recursive] newtypes
where
@@ -486,7 +487,7 @@ mkDataConRep dflags fam_envs wrap_name data_con
-- applications are treated as values
`setInlinePragInfo` alwaysInlinePragma
`setUnfoldingInfo` wrap_unf
- `setStrictnessInfo` Just wrap_sig
+ `setStrictnessInfo` wrap_sig
-- We need to get the CAF info right here because TidyPgm
-- does not tidy the IdInfo of implicit bindings (like the wrapper)
-- so it not make sure that the CAF info is sane
@@ -494,7 +495,7 @@ mkDataConRep dflags fam_envs wrap_name data_con
wrap_sig = mkStrictSig (mkTopDmdType wrap_arg_dmds (dataConCPR data_con))
wrap_arg_dmds = map mk_dmd (dropList eq_spec wrap_bangs)
mk_dmd str | isBanged str = evalDmd
- | otherwise = lazyDmd
+ | otherwise = topDmd
-- The Cpr info can be important inside INLINE rhss, where the
-- wrapper constructor isn't inlined.
-- And the argument strictness can be important too; we
@@ -891,10 +892,10 @@ mkPrimOpId prim_op
id = mkGlobalId (PrimOpId prim_op) name ty info
info = noCafIdInfo
- `setSpecInfo` mkSpecInfo (maybeToList $ primOpRules name prim_op)
- `setArityInfo` arity
- `setStrictnessInfo` Just strict_sig
- `setInlinePragInfo` neverInlinePragma
+ `setSpecInfo` mkSpecInfo (maybeToList $ primOpRules name prim_op)
+ `setArityInfo` arity
+ `setStrictnessInfo` strict_sig
+ `setInlinePragInfo` neverInlinePragma
-- We give PrimOps a NOINLINE pragma so that we don't
-- get silly warnings from Desugar.dsRule (the inline_shadows_rule
-- test) about a RULE conflicting with a possible inlining
@@ -924,12 +925,12 @@ mkFCallId dflags uniq fcall ty
info = noCafIdInfo
`setArityInfo` arity
- `setStrictnessInfo` Just strict_sig
+ `setStrictnessInfo` strict_sig
- (_, tau) = tcSplitForAllTys ty
- (arg_tys, _) = tcSplitFunTys tau
- arity = length arg_tys
- strict_sig = mkStrictSig (mkTopDmdType (replicate arity evalDmd) TopRes)
+ (_, tau) = tcSplitForAllTys ty
+ (arg_tys, _) = tcSplitFunTys tau
+ arity = length arg_tys
+ strict_sig = mkStrictSig (mkTopDmdType (replicate arity evalDmd) topRes)
\end{code}
diff --git a/compiler/coreSyn/CoreArity.lhs b/compiler/coreSyn/CoreArity.lhs
index fbb98c2174..50b834be3f 100644
--- a/compiler/coreSyn/CoreArity.lhs
+++ b/compiler/coreSyn/CoreArity.lhs
@@ -131,9 +131,10 @@ exprBotStrictness_maybe :: CoreExpr -> Maybe (Arity, StrictSig)
exprBotStrictness_maybe e
= case getBotArity (arityType env e) of
Nothing -> Nothing
- Just ar -> Just (ar, mkStrictSig (mkTopDmdType (replicate ar topDmd) BotRes))
+ Just ar -> Just (ar, sig ar)
where
- env = AE { ae_bndrs = [], ae_ped_bot = True, ae_cheap_fn = \ _ _ -> False }
+ env = AE { ae_bndrs = [], ae_ped_bot = True, ae_cheap_fn = \ _ _ -> False }
+ sig ar = mkStrictSig (mkTopDmdType (replicate ar topDmd) botRes)
-- For this purpose we can be very simple
\end{code}
@@ -627,7 +628,8 @@ arityType env (Cast e co)
-- Casts don't affect that part. Getting this wrong provoked #5475
arityType _ (Var v)
- | Just strict_sig <- idStrictness_maybe v
+ | strict_sig <- idStrictness v
+ , not $ isTopSig strict_sig
, (ds, res) <- splitStrictSig strict_sig
, let arity = length ds
= if isBotRes res then ABot arity
diff --git a/compiler/coreSyn/CoreLint.lhs b/compiler/coreSyn/CoreLint.lhs
index cc25ece652..ac3be95983 100644
--- a/compiler/coreSyn/CoreLint.lhs
+++ b/compiler/coreSyn/CoreLint.lhs
@@ -223,16 +223,15 @@ lintSingleBinding top_lvl_flag rec_flag (binder,rhs)
-- Check whether arity and demand type are consistent (only if demand analysis
-- already happened)
- ; checkL (case maybeDmdTy of
- Just (StrictSig dmd_ty) -> idArity binder >= dmdTypeDepth dmd_ty || exprIsTrivial rhs
- Nothing -> True)
+ ; checkL (case dmdTy of
+ StrictSig dmd_ty -> idArity binder >= dmdTypeDepth dmd_ty || exprIsTrivial rhs)
(mkArityMsg binder) }
-- We should check the unfolding, if any, but this is tricky because
-- the unfolding is a SimplifiableCoreExpr. Give up for now.
where
binder_ty = idType binder
- maybeDmdTy = idStrictness_maybe binder
+ dmdTy = idStrictness binder
bndr_vars = varSetElems (idFreeVars binder)
-- If you edit this function, you may need to update the GHC formalism
diff --git a/compiler/coreSyn/CorePrep.lhs b/compiler/coreSyn/CorePrep.lhs
index fda2bccf9a..458b192a0b 100644
--- a/compiler/coreSyn/CorePrep.lhs
+++ b/compiler/coreSyn/CorePrep.lhs
@@ -336,8 +336,7 @@ Into this one:
%************************************************************************
\begin{code}
-cpeBind :: TopLevelFlag
- -> CorePrepEnv -> CoreBind
+cpeBind :: TopLevelFlag -> CorePrepEnv -> CoreBind
-> UniqSM (CorePrepEnv, Floats)
cpeBind top_lvl env (NonRec bndr rhs)
= do { (_, bndr1) <- cpCloneBndr env bndr
@@ -472,8 +471,8 @@ cpeRhsE _env expr@(Type {}) = return (emptyFloats, expr)
cpeRhsE _env expr@(Coercion {}) = return (emptyFloats, expr)
cpeRhsE env (Lit (LitInteger i _))
= cpeRhsE env (cvtLitInteger (cpe_dynFlags env) (getMkIntegerId env) i)
-cpeRhsE _env expr@(Lit {}) = return (emptyFloats, expr)
-cpeRhsE env expr@(Var {}) = cpeApp env expr
+cpeRhsE _env expr@(Lit {}) = return (emptyFloats, expr)
+cpeRhsE env expr@(Var {}) = cpeApp env expr
cpeRhsE env (Var f `App` _ `App` arg)
| f `hasKey` lazyIdKey -- Replace (lazy a) by a
@@ -642,12 +641,13 @@ cpeApp env expr
= do { (fun',hd,fun_ty,floats,ss) <- collect_args fun (depth+1)
; let
(ss1, ss_rest) = case ss of
- (ss1:ss_rest) -> (ss1, ss_rest)
- [] -> (lazyDmd, [])
+ (ss1:ss_rest) -> (ss1, ss_rest)
+ [] -> (topDmd, [])
(arg_ty, res_ty) = expectJust "cpeBody:collect_args" $
splitFunTy_maybe fun_ty
+ is_strict = isStrictDmd ss1
- ; (fs, arg') <- cpeArg env (isStrictDmd ss1) arg arg_ty
+ ; (fs, arg') <- cpeArg env is_strict arg arg_ty
; return (App fun' arg', hd, res_ty, fs `appendFloats` floats, ss_rest) }
collect_args (Var v) depth
@@ -656,10 +656,10 @@ cpeApp env expr
; return (Var v2, (Var v2, depth), idType v2, emptyFloats, stricts) }
where
stricts = case idStrictness v of
- StrictSig (DmdType _ demands _)
- | listLengthCmp demands depth /= GT -> demands
+ StrictSig (DmdType _ demands _)
+ | listLengthCmp demands depth /= GT -> demands
-- length demands <= depth
- | otherwise -> []
+ | otherwise -> []
-- If depth < length demands, then we have too few args to
-- satisfy strictness info so we have to ignore all the
-- strictness info, e.g. + (error "urk")
@@ -689,8 +689,8 @@ cpeApp env expr
-- ---------------------------------------------------------------------------
-- This is where we arrange that a non-trivial argument is let-bound
-cpeArg :: CorePrepEnv -> RhsDemand -> CoreArg -> Type
- -> UniqSM (Floats, CpeTriv)
+cpeArg :: CorePrepEnv -> RhsDemand
+ -> CoreArg -> Type -> UniqSM (Floats, CpeTriv)
cpeArg env is_strict arg arg_ty
= do { (floats1, arg1) <- cpeRhsE env arg -- arg1 can be a lambda
; (floats2, arg2) <- if want_float floats1 arg1
diff --git a/compiler/coreSyn/CoreTidy.lhs b/compiler/coreSyn/CoreTidy.lhs
index e29c50cc9d..a46dc65ccf 100644
--- a/compiler/coreSyn/CoreTidy.lhs
+++ b/compiler/coreSyn/CoreTidy.lhs
@@ -171,8 +171,8 @@ tidyLetBndr rec_tidy_env env (id,rhs)
idinfo = idInfo id
new_info = idInfo new_id
`setArityInfo` exprArity rhs
- `setStrictnessInfo` strictnessInfo idinfo
- `setDemandInfo` demandInfo idinfo
+ `setStrictnessInfo` strictnessInfo idinfo
+ `setDemandInfo` demandInfo idinfo
`setInlinePragInfo` inlinePragInfo idinfo
`setUnfoldingInfo` new_unf
diff --git a/compiler/coreSyn/MkCore.lhs b/compiler/coreSyn/MkCore.lhs
index 42f83151f7..4cc199853b 100644
--- a/compiler/coreSyn/MkCore.lhs
+++ b/compiler/coreSyn/MkCore.lhs
@@ -74,8 +74,9 @@ import Type
import Coercion
import TysPrim
import DataCon ( DataCon, dataConWorkId )
-import IdInfo ( vanillaIdInfo, setStrictnessInfo, setArityInfo )
-import Demand
+import IdInfo ( vanillaIdInfo, setStrictnessInfo,
+ setArityInfo )
+import Demand
import Name hiding ( varName )
import Outputable
import FastString
@@ -733,7 +734,7 @@ pc_bottoming_Id :: Name -> Type -> Id
pc_bottoming_Id name ty
= mkVanillaGlobalWithInfo name ty bottoming_info
where
- bottoming_info = vanillaIdInfo `setStrictnessInfo` Just strict_sig
+ bottoming_info = vanillaIdInfo `setStrictnessInfo` strict_sig
`setArityInfo` 1
-- Make arity and strictness agree
@@ -746,7 +747,7 @@ pc_bottoming_Id name ty
-- any pc_bottoming_Id will itself have CafRefs, which bloats
-- SRTs.
- strict_sig = mkStrictSig (mkTopDmdType [evalDmd] BotRes)
- -- These "bottom" out, no matter what their arguments
+ strict_sig = mkStrictSig (mkTopDmdType [evalDmd] botRes)
+ -- These "bottom" out, no matter what their arguments
\end{code}
diff --git a/compiler/coreSyn/PprCore.lhs b/compiler/coreSyn/PprCore.lhs
index cdae3bd7c7..4877ec7dde 100644
--- a/compiler/coreSyn/PprCore.lhs
+++ b/compiler/coreSyn/PprCore.lhs
@@ -29,7 +29,6 @@ import BasicTypes
import Util
import Outputable
import FastString
-import Data.Maybe
\end{code}
%************************************************************************
@@ -336,10 +335,10 @@ pprIdBndrInfo info
dmd_info = demandInfo info
lbv_info = lbvarInfo info
- has_prag = not (isDefaultInlinePragma prag_info)
- has_occ = not (isNoOcc occ_info)
- has_dmd = case dmd_info of { Nothing -> False; Just d -> not (isTop d) }
- has_lbv = not (hasNoLBVarInfo lbv_info)
+ has_prag = not (isDefaultInlinePragma prag_info)
+ has_occ = not (isNoOcc occ_info)
+ has_dmd = not $ isTopDmd dmd_info
+ has_lbv = not (hasNoLBVarInfo lbv_info)
doc = showAttributes
[ (has_prag, ptext (sLit "InlPrag=") <> ppr prag_info)
@@ -365,7 +364,7 @@ ppIdInfo id info
[ (True, pp_scope <> ppr (idDetails id))
, (has_arity, ptext (sLit "Arity=") <> int arity)
, (has_caf_info, ptext (sLit "Caf=") <> ppr caf_info)
- , (has_strictness, ptext (sLit "Str=") <> pprStrictness str_info)
+ , (True, ptext (sLit "Str=") <> pprStrictness str_info)
, (has_unf, ptext (sLit "Unf=") <> ppr unf_info)
, (not (null rules), ptext (sLit "RULES:") <+> vcat (map pprRule rules))
] -- Inline pragma, occ, demand, lbvar info
@@ -383,7 +382,6 @@ ppIdInfo id info
has_caf_info = not (mayHaveCafRefs caf_info)
str_info = strictnessInfo info
- has_strictness = isJust str_info
unf_info = unfoldingInfo info
has_unf = hasSomeUnfolding unf_info
diff --git a/compiler/iface/BinIface.hs b/compiler/iface/BinIface.hs
index cf9402a74e..39801bf64c 100644
--- a/compiler/iface/BinIface.hs
+++ b/compiler/iface/BinIface.hs
@@ -30,13 +30,11 @@ import TysWiredIn
import IfaceEnv
import HscTypes
import BasicTypes
-import Demand
import Annotations
import IfaceSyn
import Module
import Name
import Avail
-import VarEnv
import DynFlags
import UniqFM
import UniqSupply
@@ -389,7 +387,6 @@ data BinSymbolTable = BinSymbolTable {
-- indexed by Name
}
-
putFastString :: BinDictionary -> BinHandle -> FastString -> IO ()
putFastString dict bh fs = allocateFastString dict fs >>= put_ bh
@@ -427,12 +424,6 @@ data BinDictionary = BinDictionary {
{-! for StrictnessMark derive: Binary !-}
{-! for Activation derive: Binary !-}
--- Demand
-{-! for Demand derive: Binary !-}
-{-! for Demands derive: Binary !-}
-{-! for DmdResult derive: Binary !-}
-{-! for StrictSig derive: Binary !-}
-
-- Class
{-! for DefMeth derive: Binary !-}
@@ -818,87 +809,6 @@ instance Binary Fixity where
ab <- get bh
return (Fixity aa ab)
--------------------------------------------------------------------------
--- Types from: Demand
--------------------------------------------------------------------------
-
-instance Binary DmdType where
- -- Ignore DmdEnv when spitting out the DmdType
- put bh (DmdType _ ds dr) = do p <- put bh ds; put_ bh dr; return (castBin p)
- get bh = do ds <- get bh; dr <- get bh; return (DmdType emptyVarEnv ds dr)
-
-instance Binary Demand where
- put_ bh Top = do
- putByte bh 0
- put_ bh Abs = do
- putByte bh 1
- put_ bh (Call aa) = do
- putByte bh 2
- put_ bh aa
- put_ bh (Eval ab) = do
- putByte bh 3
- put_ bh ab
- put_ bh (Defer ac) = do
- putByte bh 4
- put_ bh ac
- put_ bh (Box ad) = do
- putByte bh 5
- put_ bh ad
- put_ bh Bot = do
- putByte bh 6
- get bh = do
- h <- getByte bh
- case h of
- 0 -> do return Top
- 1 -> do return Abs
- 2 -> do aa <- get bh
- return (Call aa)
- 3 -> do ab <- get bh
- return (Eval ab)
- 4 -> do ac <- get bh
- return (Defer ac)
- 5 -> do ad <- get bh
- return (Box ad)
- _ -> do return Bot
-
-instance Binary Demands where
- put_ bh (Poly aa) = do
- putByte bh 0
- put_ bh aa
- put_ bh (Prod ab) = do
- putByte bh 1
- put_ bh ab
- get bh = do
- h <- getByte bh
- case h of
- 0 -> do aa <- get bh
- return (Poly aa)
- _ -> do ab <- get bh
- return (Prod ab)
-
-instance Binary DmdResult where
- put_ bh TopRes = do
- putByte bh 0
- put_ bh RetCPR = do
- putByte bh 1
- put_ bh BotRes = do
- putByte bh 2
- get bh = do
- h <- getByte bh
- case h of
- 0 -> do return TopRes
- 1 -> do return RetCPR -- Really use RetCPR even if -fcpr-off
- -- The wrapper was generated for CPR in
- -- the imported module!
- _ -> do return BotRes
-
-instance Binary StrictSig where
- put_ bh (StrictSig aa) = do
- put_ bh aa
- get bh = do
- aa <- get bh
- return (StrictSig aa)
-
-------------------------------------------------------------------------
-- Types from: CostCentre
@@ -1219,11 +1129,11 @@ instance Binary IfaceIdInfo where
_ -> lazyGet bh >>= (return . HasInfo) -- NB lazyGet
instance Binary IfaceInfoItem where
- put_ bh (HsArity aa) = putByte bh 0 >> put_ bh aa
- put_ bh (HsStrictness ab) = putByte bh 1 >> put_ bh ab
- put_ bh (HsUnfold lb ad) = putByte bh 2 >> put_ bh lb >> put_ bh ad
- put_ bh (HsInline ad) = putByte bh 3 >> put_ bh ad
- put_ bh HsNoCafRefs = putByte bh 4
+ put_ bh (HsArity aa) = putByte bh 0 >> put_ bh aa
+ put_ bh (HsStrictness ab) = putByte bh 1 >> put_ bh ab
+ put_ bh (HsUnfold lb ad) = putByte bh 2 >> put_ bh lb >> put_ bh ad
+ put_ bh (HsInline ad) = putByte bh 3 >> put_ bh ad
+ put_ bh HsNoCafRefs = putByte bh 4
get bh = do
h <- getByte bh
case h of
diff --git a/compiler/iface/IfaceSyn.lhs b/compiler/iface/IfaceSyn.lhs
index e72f95c9a8..9ef5ef66f4 100644
--- a/compiler/iface/IfaceSyn.lhs
+++ b/compiler/iface/IfaceSyn.lhs
@@ -230,11 +230,11 @@ data IfaceIdInfo
-- and so gives a new version.
data IfaceInfoItem
- = HsArity Arity
- | HsStrictness StrictSig
- | HsInline InlinePragma
- | HsUnfold Bool -- True <=> isStrongLoopBreaker is true
- IfaceUnfolding -- See Note [Expose recursive functions]
+ = HsArity Arity
+ | HsStrictness StrictSig
+ | HsInline InlinePragma
+ | HsUnfold Bool -- True <=> isStrongLoopBreaker is true
+ IfaceUnfolding -- See Note [Expose recursive functions]
| HsNoCafRefs
-- NB: Specialisations and rules come in separately and are
@@ -750,13 +750,13 @@ instance Outputable IfaceIdInfo where
<+> ptext (sLit "-}")
instance Outputable IfaceInfoItem where
- ppr (HsUnfold lb unf) = ptext (sLit "Unfolding")
- <> ppWhen lb (ptext (sLit "(loop-breaker)"))
- <> colon <+> ppr unf
- ppr (HsInline prag) = ptext (sLit "Inline:") <+> ppr prag
- ppr (HsArity arity) = ptext (sLit "Arity:") <+> int arity
+ ppr (HsUnfold lb unf) = ptext (sLit "Unfolding")
+ <> ppWhen lb (ptext (sLit "(loop-breaker)"))
+ <> colon <+> ppr unf
+ ppr (HsInline prag) = ptext (sLit "Inline:") <+> ppr prag
+ ppr (HsArity arity) = ptext (sLit "Arity:") <+> int arity
ppr (HsStrictness str) = ptext (sLit "Strictness:") <+> pprIfaceStrictSig str
- ppr HsNoCafRefs = ptext (sLit "HasNoCafRefs")
+ ppr HsNoCafRefs = ptext (sLit "HasNoCafRefs")
instance Outputable IfaceUnfolding where
ppr (IfCompulsory e) = ptext (sLit "<compulsory>") <+> parens (ppr e)
diff --git a/compiler/iface/MkIface.lhs b/compiler/iface/MkIface.lhs
index d5b302406e..2200577c59 100644
--- a/compiler/iface/MkIface.lhs
+++ b/compiler/iface/MkIface.lhs
@@ -1695,7 +1695,7 @@ toIfaceIdDetails other = pprTrace "toIfaceIdDetails" (p
toIfaceIdInfo :: IdInfo -> IfaceIdInfo
toIfaceIdInfo id_info
- = case catMaybes [arity_hsinfo, caf_hsinfo, strict_hsinfo,
+ = case catMaybes [arity_hsinfo, caf_hsinfo, strict_hsinfo,
inline_hsinfo, unfold_hsinfo] of
[] -> NoInfo
infos -> HasInfo infos
@@ -1715,9 +1715,9 @@ toIfaceIdInfo id_info
------------ Strictness --------------
-- No point in explicitly exporting TopSig
- strict_hsinfo = case strictnessInfo id_info of
- Just sig | not (isTopSig sig) -> Just (HsStrictness sig)
- _other -> Nothing
+ sig_info = strictnessInfo id_info
+ strict_hsinfo | not (isTopSig sig_info) = Just (HsStrictness sig_info)
+ | otherwise = Nothing
------------ Unfolding --------------
unfold_hsinfo = toIfUnfolding loop_breaker (unfoldingInfo id_info)
diff --git a/compiler/iface/TcIface.lhs b/compiler/iface/TcIface.lhs
index d6acc06688..930bb1e2a2 100644
--- a/compiler/iface/TcIface.lhs
+++ b/compiler/iface/TcIface.lhs
@@ -31,8 +31,8 @@ import CoreSyn
import CoreUtils
import CoreUnfold
import CoreLint
-import WorkWrap
-import MkCore( castBottomExpr )
+import WorkWrap ( mkWrapper )
+import MkCore ( castBottomExpr )
import Id
import MkId
import IdInfo
@@ -1205,7 +1205,7 @@ tcIdInfo ignore_prags name ty info
tcPrag :: IdInfo -> IfaceInfoItem -> IfL IdInfo
tcPrag info HsNoCafRefs = return (info `setCafInfo` NoCafRefs)
tcPrag info (HsArity arity) = return (info `setArityInfo` arity)
- tcPrag info (HsStrictness str) = return (info `setStrictnessInfo` Just str)
+ tcPrag info (HsStrictness str) = return (info `setStrictnessInfo` str)
tcPrag info (HsInline prag) = return (info `setInlinePragInfo` prag)
-- The next two are lazy, so they don't transitively suck stuff in
@@ -1226,12 +1226,11 @@ tcUnfolding name _ info (IfCoreUnfold stable if_expr)
Nothing -> NoUnfolding
Just expr -> mkUnfolding dflags unf_src
True {- Top level -}
- is_bottoming expr) }
+ is_bottoming
+ expr) }
where
-- Strictness should occur before unfolding!
- is_bottoming = case strictnessInfo info of
- Just sig -> isBottomingSig sig
- Nothing -> False
+ is_bottoming = isBottomingSig $ strictnessInfo info
tcUnfolding name _ _ (IfCompulsory if_expr)
= do { mb_expr <- tcPragExpr name if_expr
@@ -1278,12 +1277,9 @@ tcIfaceWrapper name ty info arity get_worker
= mkWwInlineRule wkr_id
(initUs_ us (mkWrapper dflags ty strict_sig) wkr_id)
arity
-
- -- Again we rely here on strictness info always appearing
- -- before unfolding
- strict_sig = case strictnessInfo info of
- Just sig -> sig
- Nothing -> pprPanic "Worker info but no strictness for" (ppr name)
+ -- Again we rely here on strictness info
+ -- always appearing before unfolding
+ strict_sig = strictnessInfo info
\end{code}
For unfoldings we try to do the job lazily, so that we never type check
diff --git a/compiler/main/TidyPgm.lhs b/compiler/main/TidyPgm.lhs
index bc4c6b9abf..f34cbe548a 100644
--- a/compiler/main/TidyPgm.lhs
+++ b/compiler/main/TidyPgm.lhs
@@ -29,7 +29,7 @@ import Id
import IdInfo
import InstEnv
import FamInstEnv
-import Demand
+import Demand ( appIsBottom, isTopSig, isBottomingSig )
import BasicTypes
import Name hiding (varName)
import NameSet
@@ -663,7 +663,7 @@ addExternal expose_all id = (new_needed_ids, show_unfold)
show_unfold = show_unfolding (unfoldingInfo idinfo)
never_active = isNeverActive (inlinePragmaActivation (inlinePragInfo idinfo))
loop_breaker = isStrongLoopBreaker (occInfo idinfo)
- bottoming_fn = isBottomingSig (strictnessInfo idinfo `orElse` topSig)
+ bottoming_fn = isBottomingSig (strictnessInfo idinfo)
-- Stuff to do with the Id's unfolding
-- We leave the unfolding there even if there is a worker
@@ -1069,27 +1069,25 @@ tidyTopIdInfo dflags rhs_tidy_env name orig_rhs tidy_rhs idinfo show_unfold caf_
-- when we are doing -fexpose-all-unfoldings
--------- Strictness ------------
- final_sig | Just sig <- strictnessInfo idinfo
- = WARN( _bottom_hidden sig, ppr name ) Just sig
- | Just (_, sig) <- mb_bot_str = Just sig
- | otherwise = Nothing
+ mb_bot_str = exprBotStrictness_maybe orig_rhs
- -- If the cheap-and-cheerful bottom analyser can see that
- -- the RHS is bottom, it should jolly well be exposed
- _bottom_hidden id_sig = case mb_bot_str of
- Nothing -> False
- Just (arity, _) -> not (appIsBottom id_sig arity)
+ sig = strictnessInfo idinfo
+ final_sig | not $ isTopSig sig
+ = WARN( _bottom_hidden sig , ppr name ) sig
+ -- try a cheap-and-cheerful bottom analyser
+ | Just (_, nsig) <- mb_bot_str = nsig
+ | otherwise = sig
- mb_bot_str = exprBotStrictness_maybe orig_rhs
+ _bottom_hidden id_sig = case mb_bot_str of
+ Nothing -> False
+ Just (arity, _) -> not (appIsBottom id_sig arity)
--------- Unfolding ------------
unf_info = unfoldingInfo idinfo
unfold_info | show_unfold = tidyUnfolding rhs_tidy_env unf_info unf_from_rhs
| otherwise = noUnfolding
unf_from_rhs = mkTopUnfolding dflags is_bot tidy_rhs
- is_bot = case final_sig of
- Just sig -> isBottomingSig sig
- Nothing -> False
+ is_bot = isBottomingSig final_sig
-- NB: do *not* expose the worker if show_unfold is off,
-- because that means this thing is a loop breaker or
-- marked NOINLINE or something like that
diff --git a/compiler/prelude/primops.txt.pp b/compiler/prelude/primops.txt.pp
index 77236a1727..6d551d90e5 100644
--- a/compiler/prelude/primops.txt.pp
+++ b/compiler/prelude/primops.txt.pp
@@ -45,10 +45,9 @@ defaults
can_fail = False -- See Note Note [PrimOp can_fail and has_side_effects] in PrimOp
commutable = False
code_size = { primOpCodeSizeDefault }
- strictness = { \ arity -> mkStrictSig (mkTopDmdType (replicate arity lazyDmd) TopRes) }
+ strictness = { \ arity -> mkStrictSig (mkTopDmdType (replicate arity topDmd) topRes) }
fixity = Nothing
-
-- Currently, documentation is produced using latex, so contents of
-- description fields should be legal latex. Descriptions can contain
-- matched pairs of embedded curly brackets.
@@ -1530,7 +1529,7 @@ primop CatchOp "catch#" GenPrimOp
primop RaiseOp "raise#" GenPrimOp
a -> b
with
- strictness = { \ _arity -> mkStrictSig (mkTopDmdType [lazyDmd] BotRes) }
+ strictness = { \ _arity -> mkStrictSig (mkTopDmdType [topDmd] botRes) }
-- NB: result is bottom
out_of_line = True
@@ -1547,7 +1546,7 @@ primop RaiseOp "raise#" GenPrimOp
primop RaiseIOOp "raiseIO#" GenPrimOp
a -> State# RealWorld -> (# State# RealWorld, b #)
with
- strictness = { \ _arity -> mkStrictSig (mkTopDmdType [lazyDmd,lazyDmd] BotRes) }
+ strictness = { \ _arity -> mkStrictSig (mkTopDmdType [topDmd, topDmd] botRes) }
out_of_line = True
has_side_effects = True
@@ -2028,7 +2027,8 @@ section "Tag to enum stuff"
primop DataToTagOp "dataToTag#" GenPrimOp
a -> Int#
with
- strictness = { \ _arity -> mkStrictSig (mkTopDmdType [seqDmd] TopRes) }
+ strictness = { \ _arity -> mkStrictSig (mkTopDmdType [evalDmd] topRes) }
+
-- dataToTag# must have an evaluated argument
primop TagToEnumOp "tagToEnum#" GenPrimOp
diff --git a/compiler/simplCore/FloatOut.lhs b/compiler/simplCore/FloatOut.lhs
index f5cf9f107d..0a6e8b9357 100644
--- a/compiler/simplCore/FloatOut.lhs
+++ b/compiler/simplCore/FloatOut.lhs
@@ -359,8 +359,12 @@ Here y is demanded. If we float it outside the lazy 'x=..' then
we'd have to zap its demand info, and it may never be restored.
So at a 'let' we leave the binding right where the are unless
-the binding will escape a value lambda. That's what the
-partitionByMajorLevel does in the floatExpr (Let ...) case.
+the binding will escape a value lambda, e.g.
+
+(\x -> let y = fac 100 in y)
+
+That's what the partitionByMajorLevel does in the floatExpr (Let ...)
+case.
Notice, though, that we must take care to drop any bindings
from the body of the let that depend on the staying-put bindings.
diff --git a/compiler/simplCore/SetLevels.lhs b/compiler/simplCore/SetLevels.lhs
index 076df2e67c..87d5de2ac2 100644
--- a/compiler/simplCore/SetLevels.lhs
+++ b/compiler/simplCore/SetLevels.lhs
@@ -77,7 +77,7 @@ import Var
import VarSet
import VarEnv
import Literal ( litIsTrivial )
-import Demand ( StrictSig, increaseStrictSigArity )
+import Demand ( StrictSig, increaseStrictSigArity )
import Name ( getOccName, mkSystemVarName )
import OccName ( occNameString )
import Type ( isUnLiftedType, Type, mkPiTypes )
@@ -563,8 +563,8 @@ Doesn't change any other allocation at all.
\begin{code}
annotateBotStr :: Id -> Maybe (Arity, StrictSig) -> Id
annotateBotStr id Nothing = id
-annotateBotStr id (Just (arity,sig)) = id `setIdArity` arity
- `setIdStrictness` sig
+annotateBotStr id (Just (arity, sig)) = id `setIdArity` arity
+ `setIdStrictness` sig
notWorthFloating :: CoreExprWithFVs -> [Var] -> Bool
-- Returns True if the expression would be replaced by
@@ -820,7 +820,8 @@ lvlLamBndrs lvl bndrs
\begin{code}
-- Destination level is the max Id level of the expression
-- (We'll abstract the type variables, if any.)
-destLevel :: LevelEnv -> VarSet -> Bool -> Maybe (Arity, StrictSig) -> Level
+destLevel :: LevelEnv -> VarSet -> Bool ->
+ Maybe (Arity, StrictSig) -> Level
destLevel env fvs is_function mb_bot
| Just {} <- mb_bot = tOP_LEVEL -- Send bottoming bindings to the top
-- regardless; see Note [Bottoming floats]
@@ -1079,9 +1080,10 @@ newLvlVar vars body_ty mb_bot
arity = count isId vars
info = case mb_bot of
Nothing -> vanillaIdInfo
- Just (bot_arity, sig) -> vanillaIdInfo
- `setArityInfo` (arity + bot_arity)
- `setStrictnessInfo` Just (increaseStrictSigArity arity sig)
+ Just (bot_arity, sig) ->
+ vanillaIdInfo
+ `setArityInfo` (arity + bot_arity)
+ `setStrictnessInfo` (increaseStrictSigArity arity sig)
-- The deeply tiresome thing is that we have to apply the substitution
-- to the rules inside each Id. Grr. But it matters.
@@ -1114,7 +1116,9 @@ cloneVar :: LevelEnv -> Var -> Level -> LvlM (LevelEnv, Var)
cloneVar env v dest_lvl -- Works for Ids, TyVars and CoVars
= do { u <- getUniqueM
; let (subst', v1) = cloneBndr (le_subst env) u v
- v2 = if isId v1 then zapDemandIdInfo v1 else v1
+ v2 = if isId v1
+ then zapDemandIdInfo v1
+ else v1
env' = extendCloneLvlEnv dest_lvl env subst' [(v,v2)]
; return (env', v2) }
@@ -1127,7 +1131,8 @@ cloneRecVars env vs dest_lvl -- Works for CoVars too (since cloneRecIdBndrs does
us <- getUniqueSupplyM
let
(subst', vs1) = cloneRecIdBndrs (le_subst env) us vs
- vs2 = map zapDemandIdInfo vs1 -- Note [Zapping the demand info]
+ -- Note [Zapping the demand info]
+ vs2 = map zapDemandIdInfo vs1
env' = extendCloneLvlEnv dest_lvl env subst' (vs `zip` vs2)
return (env', vs2)
\end{code}
diff --git a/compiler/simplCore/SimplCore.lhs b/compiler/simplCore/SimplCore.lhs
index 8d2a667bf6..8270260e16 100644
--- a/compiler/simplCore/SimplCore.lhs
+++ b/compiler/simplCore/SimplCore.lhs
@@ -43,7 +43,7 @@ import LiberateCase ( liberateCase )
import SAT ( doStaticArgs )
import Specialise ( specProgram)
import SpecConstr ( specConstrProgram)
-import DmdAnal ( dmdAnalPgm )
+import DmdAnal ( dmdAnalProgram )
import WorkWrap ( wwTopBinds )
import Vectorise ( vectorise )
import FastString
@@ -190,6 +190,13 @@ getCoreToDo dflags
-- Don't do case-of-case transformations.
-- This makes full laziness work better
+ -- New demand analyser
+ demand_analyser = (CoreDoPasses ([
+ CoreDoStrictness,
+ CoreDoWorkerWrapper,
+ simpl_phase 0 ["post-worker-wrapper"] max_iter
+ ]))
+
core_todo =
if opt_level == 0 then
[ vectorisation
@@ -256,11 +263,7 @@ getCoreToDo dflags
-- Don't stop now!
simpl_phase 0 ["main"] (max max_iter 3),
- runWhen strictness (CoreDoPasses [
- CoreDoStrictness,
- CoreDoWorkerWrapper,
- simpl_phase 0 ["post-worker-wrapper"] max_iter
- ]),
+ runWhen strictness demand_analyser,
runWhen full_laziness $
CoreDoFloatOutwards FloatOutSwitches {
@@ -387,8 +390,8 @@ doCorePass _ (CoreDoFloatOutwards f) = {-# SCC "FloatOutwards" #-}
doCorePass _ CoreDoStaticArgs = {-# SCC "StaticArgs" #-}
doPassU doStaticArgs
-doCorePass _ CoreDoStrictness = {-# SCC "Stranal" #-}
- doPassDM dmdAnalPgm
+doCorePass _ CoreDoStrictness = {-# SCC "NewStranal" #-}
+ doPassDM dmdAnalProgram
doCorePass dflags CoreDoWorkerWrapper = {-# SCC "WorkWrap" #-}
doPassU (wwTopBinds dflags)
@@ -896,7 +899,7 @@ transferIdInfo exported_id local_id
= modifyIdInfo transfer exported_id
where
local_info = idInfo local_id
- transfer exp_info = exp_info `setStrictnessInfo` strictnessInfo local_info
+ transfer exp_info = exp_info `setStrictnessInfo` strictnessInfo local_info
`setUnfoldingInfo` unfoldingInfo local_info
`setInlinePragInfo` inlinePragInfo local_info
`setSpecInfo` addSpecInfo (specInfo exp_info) new_info
diff --git a/compiler/simplCore/Simplify.lhs b/compiler/simplCore/Simplify.lhs
index 246c5b3ec3..f2ab037207 100644
--- a/compiler/simplCore/Simplify.lhs
+++ b/compiler/simplCore/Simplify.lhs
@@ -454,7 +454,7 @@ prepareRhs top_lvl env id (Cast rhs co) -- Note [Float coercions]
; return (env', Cast rhs' co) }
where
sanitised_info = vanillaIdInfo `setStrictnessInfo` strictnessInfo info
- `setDemandInfo` demandInfo info
+ `setDemandInfo` demandInfo info
info = idInfo id
prepareRhs top_lvl env0 _ rhs0
@@ -676,8 +676,7 @@ completeBind env top_lvl old_bndr new_bndr new_rhs
-- than that of the strictness sig. This can happen: see Note [Arity decrease].
info3 | isEvaldUnfolding new_unfolding
|| (case strictnessInfo info2 of
- Just (StrictSig dmd_ty) -> new_arity < dmdTypeDepth dmd_ty
- Nothing -> False)
+ StrictSig dmd_ty -> new_arity < dmdTypeDepth dmd_ty)
= zapDemandInfo info2 `orElse` info2
| otherwise
= info2
diff --git a/compiler/specialise/SpecConstr.lhs b/compiler/specialise/SpecConstr.lhs
index 7a01ee2ee5..3dc527475f 100644
--- a/compiler/specialise/SpecConstr.lhs
+++ b/compiler/specialise/SpecConstr.lhs
@@ -42,7 +42,6 @@ import DynFlags ( DynFlags(..) )
import StaticFlags ( opt_PprStyle_Debug )
import Maybes ( orElse, catMaybes, isJust, isNothing )
import Demand
-import DmdAnal ( both )
import Serialized ( deserializeWithData )
import Util
import Pair
@@ -1386,22 +1385,24 @@ spec_one env fn arg_bndrs body (call_pat@(qvars, pats), rule_number)
-- changes (#4012).
rule_name = mkFastString ("SC:" ++ occNameString fn_occ ++ show rule_number)
spec_name = mkInternalName spec_uniq spec_occ fn_loc
--- ; pprTrace "{spec_one" (ppr (sc_count env) <+> ppr fn <+> ppr pats <+> text "-->" <+> ppr spec_name) $
+-- ; pprTrace "{spec_one" (ppr (sc_count env) <+> ppr fn <+> ppr pats <+> text "-->" <+> ppr spec_name) $
-- return ()
-- Specialise the body
; (spec_usg, spec_body) <- scExpr spec_env body
--- ; pprTrace "done spec_one}" (ppr fn) $
+-- ; pprTrace "done spec_one}" (ppr fn) $
-- return ()
-- And build the results
- ; let spec_id = mkLocalId spec_name (mkPiTypes spec_lam_args body_ty)
- `setIdStrictness` spec_str -- See Note [Transfer strictness]
+ ; let spec_id = mkLocalId spec_name (mkPiTypes spec_lam_args body_ty)
+ -- See Note [Transfer strictness]
+ `setIdStrictness` spec_str
`setIdArity` count isId spec_lam_args
spec_str = calcSpecStrictness fn spec_lam_args pats
- (spec_lam_args, spec_call_args) = mkWorkerArgs qvars body_ty
- -- Usual w/w hack to avoid generating
+ -- Conditionally use result of new worker-wrapper transform
+ (spec_lam_args, spec_call_args) = mkWorkerArgs qvars False body_ty
+ -- Usual w/w hack to avoid generating
-- a spec_rhs of unlifted type and no args
spec_rhs = mkLams spec_lam_args spec_body
@@ -1418,24 +1419,25 @@ calcSpecStrictness :: Id -- The original function
-> StrictSig -- Strictness of specialised thing
-- See Note [Transfer strictness]
calcSpecStrictness fn qvars pats
- = StrictSig (mkTopDmdType spec_dmds TopRes)
+ = StrictSig (mkTopDmdType spec_dmds topRes)
where
- spec_dmds = [ lookupVarEnv dmd_env qv `orElse` lazyDmd | qv <- qvars, isId qv ]
+ spec_dmds = [ lookupVarEnv dmd_env qv `orElse` topDmd | qv <- qvars, isId qv ]
StrictSig (DmdType _ dmds _) = idStrictness fn
dmd_env = go emptyVarEnv dmds pats
+ go :: DmdEnv -> [Demand] -> [CoreExpr] -> DmdEnv
go env ds (Type {} : pats) = go env ds pats
go env ds (Coercion {} : pats) = go env ds pats
go env (d:ds) (pat : pats) = go (go_one env d pat) ds pats
go env _ _ = env
- go_one env d (Var v) = extendVarEnv_C both env v d
- go_one env (Box d) e = go_one env d e
- go_one env (Eval (Prod ds)) e
- | (Var _, args) <- collectArgs e = go env ds args
+ go_one :: DmdEnv -> Demand -> CoreExpr -> DmdEnv
+ go_one env d (Var v) = extendVarEnv_C bothDmd env v d
+ go_one env d e
+ | Just ds <- splitProdDmd_maybe d
+ , (Var _, args) <- collectArgs e = go env ds args
go_one env _ _ = env
-
\end{code}
Note [Specialise original body]
diff --git a/compiler/stranal/DmdAnal.lhs b/compiler/stranal/DmdAnal.lhs
index 0ecefa7565..9e38bb7c0d 100644
--- a/compiler/stranal/DmdAnal.lhs
+++ b/compiler/stranal/DmdAnal.lhs
@@ -8,59 +8,36 @@
\begin{code}
{-# OPTIONS -fno-warn-tabs #-}
--- The above warning supression flag is a temporary kludge.
--- While working on this module you are encouraged to remove it and
--- detab the module (please do the detabbing in a separate patch). See
--- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
--- for details
-module DmdAnal ( dmdAnalPgm, dmdAnalTopRhs,
- both {- needed by WwLib -}
- ) where
+module DmdAnal ( dmdAnalProgram ) where
#include "HsVersions.h"
+import Var ( isTyVar )
import DynFlags
+import WwLib ( deepSplitProductType_maybe )
import Demand -- All of it
import CoreSyn
-import PprCore
-import Coercion ( isCoVarType )
-import CoreUtils ( exprIsHNF, exprIsTrivial )
-import CoreArity ( exprArity )
-import DataCon ( dataConTyCon, dataConRepStrictness, isMarkedStrict )
-import TyCon ( isProductTyCon, isRecursiveTyCon )
-import Id ( Id, idType, idInlineActivation,
- isDataConWorkId, isGlobalId, idArity,
- idStrictness,
- setIdStrictness, idDemandInfo, idUnfolding,
- idDemandInfo_maybe, setIdDemandInfo
- )
-import Var ( Var, isTyVar )
+import Outputable
import VarEnv
-import TysWiredIn ( unboxedPairDataCon )
-import TysPrim ( realWorldStatePrimTy )
-import UniqFM ( addToUFM_Directly, lookupUFM_Directly,
- minusUFM, filterUFM )
-import Type ( isUnLiftedType, eqType, tyConAppTyCon_maybe )
+import BasicTypes
+import FastString
+import Data.List
+import DataCon ( dataConTyCon, dataConRepStrictness, isMarkedStrict )
+import Id
+import CoreUtils ( exprIsHNF, exprIsTrivial )
+import PprCore
+import UniqFM ( filterUFM )
+import TyCon
+import Pair
+import Type ( eqType, tyConAppTyCon_maybe )
import Coercion ( coercionKind )
import Util
-import BasicTypes ( Arity, TopLevelFlag(..), isTopLevel, isNeverActive,
- RecFlag(..), isRec )
-import Maybes ( orElse, expectJust )
-import Outputable
-import Pair
-import Data.List
-import FastString
+import Maybes ( orElse )
+import TysWiredIn ( unboxedPairDataCon )
+import TysPrim ( realWorldStatePrimTy )
\end{code}
-To think about
-
-* set a noinline pragma on bottoming Ids
-
-* Consider f x = x+1 `fatbar` error (show x)
- We'd like to unbox x, even if that means reboxing it in the error case.
-
-
%************************************************************************
%* *
\subsection{Top level stuff}
@@ -68,8 +45,9 @@ To think about
%************************************************************************
\begin{code}
-dmdAnalPgm :: DynFlags -> CoreProgram -> IO CoreProgram
-dmdAnalPgm dflags binds
+
+dmdAnalProgram :: DynFlags -> CoreProgram -> IO CoreProgram
+dmdAnalProgram dflags binds
= do {
let { binds_plus_dmds = do_prog binds } ;
return binds_plus_dmds
@@ -78,6 +56,7 @@ dmdAnalPgm dflags binds
do_prog :: CoreProgram -> CoreProgram
do_prog binds = snd $ mapAccumL (dmdAnalTopBind dflags) emptySigEnv binds
+-- Analyse a (group of) top-level binding(s)
dmdAnalTopBind :: DynFlags
-> SigEnv
-> CoreBind
@@ -97,26 +76,7 @@ dmdAnalTopBind dflags sigs (Rec pairs)
(sigs', _, pairs') = dmdFix dflags TopLevel (virgin sigs) pairs
-- We get two iterations automatically
-- c.f. the NonRec case above
-\end{code}
-\begin{code}
-dmdAnalTopRhs :: DynFlags -> CoreExpr -> (StrictSig, CoreExpr)
--- Analyse the RHS and return
--- a) appropriate strictness info
--- b) the unfolding (decorated with strictness info)
-dmdAnalTopRhs dflags rhs
- = (sig, rhs2)
- where
- call_dmd = vanillaCall (exprArity rhs)
- (_, rhs1) = dmdAnal dflags (virgin emptySigEnv) call_dmd rhs
- (rhs_ty, rhs2) = dmdAnal dflags (nonVirgin emptySigEnv) call_dmd rhs1
- sig = mkTopSigTy dflags rhs rhs_ty
- -- Do two passes; see notes with extendSigsWithLam
- -- Otherwise we get bogus CPR info for constructors like
- -- newtype T a = MkT a
- -- The constructor looks like (\x::T a -> x), modulo the coerce
- -- extendSigsWithLam will optimistically give x a CPR tag the
- -- first time, which is wrong in the end.
\end{code}
%************************************************************************
@@ -125,34 +85,64 @@ dmdAnalTopRhs dflags rhs
%* *
%************************************************************************
+Note [Ensure demand is strict]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+It's important not to analyse e with a lazy demand because
+a) When we encounter case s of (a,b) ->
+ we demand s with U(d1d2)... but if the overall demand is lazy
+ that is wrong, and we'd need to reduce the demand on s,
+ which is inconvenient
+b) More important, consider
+ f (let x = R in x+x), where f is lazy
+ We still want to mark x as demanded, because it will be when we
+ enter the let. If we analyse f's arg with a Lazy demand, we'll
+ just mark x as Lazy
+c) The application rule wouldn't be right either
+ Evaluating (f x) in a L demand does *not* cause
+ evaluation of f in a C(L) demand!
+
+Note [Always analyse in virgin pass]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Tricky point: make sure that we analyse in the 'virgin' pass. Consider
+ rec { f acc x True = f (...rec { g y = ...g... }...)
+ f acc x False = acc }
+In the virgin pass for 'f' we'll give 'f' a very strict (bottom) type.
+That might mean that we analyse the sub-expression containing the
+E = "...rec g..." stuff in a bottom demand. Suppose we *didn't analyse*
+E, but just retuned botType.
+
+Then in the *next* (non-virgin) iteration for 'f', we might analyse E
+in a weaker demand, and that will trigger doing a fixpoint iteration
+for g. But *because it's not the virgin pass* we won't start g's
+iteration at bottom. Disaster. (This happened in $sfibToList' of
+nofib/spectral/fibheaps.)
+
+So in the virgin pass we make sure that we do analyse the expression
+at least once, to initialise its signatures.
+
\begin{code}
-dmdAnal :: DynFlags -> AnalEnv -> Demand -> CoreExpr -> (DmdType, CoreExpr)
+evalDmdAnal :: DynFlags -> AnalEnv -> CoreExpr -> (DmdType, CoreExpr)
+-- See Note [Ensure demand is strict]
+evalDmdAnal dflags env e
+ | (res_ty, e') <- dmdAnal dflags env evalDmd e
+ = (deferType res_ty, e')
+
+simpleDmdAnal :: DynFlags -> AnalEnv -> DmdType -> CoreExpr -> (DmdType, CoreExpr)
+simpleDmdAnal dflags env res_ty e
+ | ae_virgin env -- See Note [Always analyse in virgin pass]
+ , (_discarded_res_ty, e') <- dmdAnal dflags env evalDmd e
+ = (res_ty, e')
+ | otherwise
+ = (res_ty, e)
-dmdAnal _ _ Abs e = (topDmdType, e)
+dmdAnal :: DynFlags -> AnalEnv -> Demand -> CoreExpr -> (DmdType, CoreExpr)
+dmdAnal dflags env dmd e
+ | isBotDmd dmd = simpleDmdAnal dflags env botDmdType e
+ | isAbsDmd dmd = simpleDmdAnal dflags env topDmdType e
+ | not (isStrictDmd dmd) = evalDmdAnal dflags env e
-dmdAnal dflags env dmd e
- | not (isStrictDmd dmd)
- = let
- (res_ty, e') = dmdAnal dflags env evalDmd e
- in
- (deferType res_ty, e')
- -- It's important not to analyse e with a lazy demand because
- -- a) When we encounter case s of (a,b) ->
- -- we demand s with U(d1d2)... but if the overall demand is lazy
- -- that is wrong, and we'd need to reduce the demand on s,
- -- which is inconvenient
- -- b) More important, consider
- -- f (let x = R in x+x), where f is lazy
- -- We still want to mark x as demanded, because it will be when we
- -- enter the let. If we analyse f's arg with a Lazy demand, we'll
- -- just mark x as Lazy
- -- c) The application rule wouldn't be right either
- -- Evaluating (f x) in a L demand does *not* cause
- -- evaluation of f in a C(L) demand!
-
-
-dmdAnal _ _ _ (Lit lit) = (topDmdType, Lit lit)
-dmdAnal _ _ _ (Type ty) = (topDmdType, Type ty) -- Doesn't happen, in fact
+dmdAnal _ _ _ (Lit lit) = (topDmdType, Lit lit)
+dmdAnal _ _ _ (Type ty) = (topDmdType, Type ty) -- Doesn't happen, in fact
dmdAnal _ _ _ (Coercion co) = (topDmdType, Coercion co)
dmdAnal _ env dmd (Var var)
@@ -191,12 +181,20 @@ dmdAnal dflags sigs dmd (App fun (Coercion co))
-- Lots of the other code is there to make this
-- beautiful, compositional, application rule :-)
dmdAnal dflags env dmd (App fun arg) -- Non-type arguments
- = let -- [Type arg handled above]
- (fun_ty, fun') = dmdAnal dflags env (Call dmd) fun
+ = let -- [Type arg handled above]
+ (fun_ty, fun') = dmdAnal dflags env (mkCallDmd dmd) fun
(arg_ty, arg') = dmdAnal dflags env arg_dmd arg
(arg_dmd, res_ty) = splitDmdTy fun_ty
in
- (res_ty `bothType` arg_ty, App fun' arg')
+-- pprTrace "dmdAnal:app" (vcat
+-- [ text "dmd =" <+> ppr dmd
+-- , text "expr =" <+> ppr (App fun arg)
+-- , text "fun dmd_ty =" <+> ppr fun_ty
+-- , text "arg dmd =" <+> ppr arg_dmd
+-- , text "arg dmd_ty =" <+> ppr arg_ty
+-- , text "res dmd_ty =" <+> ppr res_ty
+-- , text "overall res dmd_ty =" <+> ppr (res_ty `bothDmdType` arg_ty) ])
+ (res_ty `bothDmdType` arg_ty, App fun' arg')
dmdAnal dflags env dmd (Lam var body)
| isTyVar var
@@ -205,7 +203,7 @@ dmdAnal dflags env dmd (Lam var body)
in
(body_ty, Lam var body')
- | Call body_dmd <- dmd -- A call demand: good!
+ | Just body_dmd <- peelCallDmd dmd -- A call demand: good!
= let
env' = extendSigsWithLam env var
(body_ty, body') = dmdAnal dflags env' body_dmd body
@@ -221,11 +219,12 @@ dmdAnal dflags env dmd (Lam var body)
(deferType lam_ty, Lam var' body')
dmdAnal dflags env dmd (Case scrut case_bndr ty [alt@(DataAlt dc, _, _)])
+ -- Only one alternative with a product constructor
| let tycon = dataConTyCon dc
, isProductTyCon tycon
, not (isRecursiveTyCon tycon)
= let
- env_alt = extendAnalEnv NotTopLevel env case_bndr case_bndr_sig
+ env_alt = extendAnalEnv NotTopLevel env case_bndr case_bndr_sig
(alt_ty, alt') = dmdAnalAlt dflags env_alt dmd alt
(alt_ty1, case_bndr') = annotateBndr alt_ty case_bndr
(_, bndrs', _) = alt'
@@ -249,7 +248,7 @@ dmdAnal dflags env dmd (Case scrut case_bndr ty [alt@(DataAlt dc, _, _)])
-- x = (a, absent-error)
-- and that'll crash.
-- So at one stage I had:
- -- dead_case_bndr = isAbsentDmd (idDemandInfo case_bndr')
+ -- dead_case_bndr = isAbsDmd (idDemandInfo case_bndr')
-- keepity | dead_case_bndr = Drop
-- | otherwise = Keep
--
@@ -260,25 +259,29 @@ dmdAnal dflags env dmd (Case scrut case_bndr ty [alt@(DataAlt dc, _, _)])
-- The insight is, of course, that a demand on y is a demand on the
-- scrutinee, so we need to `both` it with the scrut demand
- alt_dmd = Eval (Prod [idDemandInfo b | b <- bndrs', isId b])
- scrut_dmd = alt_dmd `both`
+ alt_dmd = mkProdDmd [idDemandInfo b | b <- bndrs', isId b]
+ scrut_dmd = alt_dmd `bothDmd`
idDemandInfo case_bndr'
(scrut_ty, scrut') = dmdAnal dflags env scrut_dmd scrut
- res_ty = alt_ty1 `bothType` scrut_ty
+ res_ty = alt_ty1 `bothDmdType` scrut_ty
in
-- pprTrace "dmdAnal:Case1" (vcat [ text "scrut" <+> ppr scrut
--- , text "scrut_ty" <+> ppr scrut_ty
--- , text "alt_ty" <+> ppr alt_ty1
--- , text "res_ty" <+> ppr res_ty ]) $
+-- , text "dmd" <+> ppr dmd
+-- , text "alt_dmd" <+> ppr alt_dmd
+-- , text "case_bndr_dmd" <+> ppr (idDemandInfo case_bndr')
+-- , text "scrut_dmd" <+> ppr scrut_dmd
+-- , text "scrut_ty" <+> ppr scrut_ty
+-- , text "alt_ty" <+> ppr alt_ty1
+-- , text "res_ty" <+> ppr res_ty ]) $
(res_ty, Case scrut' case_bndr' ty [alt'])
dmdAnal dflags env dmd (Case scrut case_bndr ty alts)
- = let
+ = let -- Case expression with multiple alternatives
(alt_tys, alts') = mapAndUnzip (dmdAnalAlt dflags env dmd) alts
(scrut_ty, scrut') = dmdAnal dflags env evalDmd scrut
- (alt_ty, case_bndr') = annotateBndr (foldr lubType botDmdType alt_tys) case_bndr
- res_ty = alt_ty `bothType` scrut_ty
+ (alt_ty, case_bndr') = annotateBndr (foldr lubDmdType botDmdType alt_tys) case_bndr
+ res_ty = alt_ty `bothDmdType` scrut_ty
in
-- pprTrace "dmdAnal:Case2" (vcat [ text "scrut" <+> ppr scrut
-- , text "scrut_ty" <+> ppr scrut_ty
@@ -331,7 +334,7 @@ dmdAnalAlt dflags env dmd (con,bndrs,rhs)
(rhs_ty, rhs') = dmdAnal dflags env dmd rhs
rhs_ty' = addDataConPatDmds con bndrs rhs_ty
(alt_ty, bndrs') = annotateBndrs rhs_ty' bndrs
- final_alt_ty | io_hack_reqd = alt_ty `lubType` topDmdType
+ final_alt_ty | io_hack_reqd = alt_ty `lubDmdType` topDmdType
| otherwise = alt_ty
-- There's a hack here for I/O operations. Consider
@@ -363,45 +366,13 @@ addDataConPatDmds (LitAlt _) _ dmd_ty = dmd_ty
addDataConPatDmds (DataAlt con) bndrs dmd_ty
= foldr add dmd_ty str_bndrs
where
- add bndr dmd_ty = addVarDmd dmd_ty bndr seqDmd
+ add bndr dmd_ty = addVarDmd dmd_ty bndr absDmd
str_bndrs = [ b | (b,s) <- zipEqual "addDataConPatBndrs"
(filter isId bndrs)
(dataConRepStrictness con)
, isMarkedStrict s ]
-\end{code}
-
-Note [Add demands for strict constructors]
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Consider this program (due to Roman):
-
- data X a = X !a
-
- foo :: X Int -> Int -> Int
- foo (X a) n = go 0
- where
- go i | i < n = a + go (i+1)
- | otherwise = 0
-
-We want the worker for 'foo' too look like this:
-
- $wfoo :: Int# -> Int# -> Int#
-
-with the first argument unboxed, so that it is not eval'd each time
-around the loop (which would otherwise happen, since 'foo' is not
-strict in 'a'. It is sound for the wrapper to pass an unboxed arg
-because X is strict, so its argument must be evaluated. And if we
-*don't* pass an unboxed argument, we can't even repair it by adding a
-`seq` thus:
-
- foo (X a) n = a `seq` go 0
-
-because the seq is discarded (very early) since X is strict!
-
-There is the usual danger of reboxing, which as usual we ignore. But
-if X is monomorphic, and has an UNPACK pragma, then this optimisation
-is even more important. We don't want the wrapper to rebox an unboxed
-argument, and pass an Int to $wfoo!
+\end{code}
%************************************************************************
%* *
@@ -418,67 +389,21 @@ dmdTransform :: AnalEnv -- The strictness environment
-- this function plus demand on its free variables
dmdTransform env var dmd
+ | isDataConWorkId var -- Data constructor
+ = dmdTransformDataConSig
+ (idArity var) (idStrictness var) dmd
------- DATA CONSTRUCTOR
- | isDataConWorkId var -- Data constructor
- = let
- StrictSig dmd_ty = idStrictness var -- It must have a strictness sig
- DmdType _ _ con_res = dmd_ty
- arity = idArity var
- in
- if arity == call_depth then -- Saturated, so unleash the demand
- let
- -- Important! If we Keep the constructor application, then
- -- we need the demands the constructor places (always lazy)
- -- If not, we don't need to. For example:
- -- f p@(x,y) = (p,y) -- S(AL)
- -- g a b = f (a,b)
- -- It's vital that we don't calculate Absent for a!
- dmd_ds = case res_dmd of
- Box (Eval ds) -> mapDmds box ds
- Eval ds -> ds
- _ -> Poly Top
-
- -- ds can be empty, when we are just seq'ing the thing
- -- If so we must make up a suitable bunch of demands
- arg_ds = case dmd_ds of
- Poly d -> replicate arity d
- Prod ds -> ASSERT( ds `lengthIs` arity ) ds
-
- in
- mkDmdType emptyDmdEnv arg_ds con_res
- -- Must remember whether it's a product, hence con_res, not TopRes
- else
- topDmdType
-
------- IMPORTED FUNCTION
- | isGlobalId var, -- Imported function
- let StrictSig dmd_ty = idStrictness var
- = -- pprTrace "strict-sig" (ppr var $$ ppr dmd_ty) $
- if dmdTypeDepth dmd_ty <= call_depth then -- Saturated, so unleash the demand
- dmd_ty
- else
- topDmdType
-
------- LOCAL LET/REC BOUND THING
- | Just (StrictSig dmd_ty, top_lvl) <- lookupSigEnv env var
- = let
- fn_ty | dmdTypeDepth dmd_ty <= call_depth = dmd_ty
- | otherwise = deferType dmd_ty
- -- NB: it's important to use deferType, and not just return topDmdType
- -- Consider let { f x y = p + x } in f 1
- -- The application isn't saturated, but we must nevertheless propagate
- -- a lazy demand for p!
- in
- if isTopLevel top_lvl then fn_ty -- Don't record top level things
+ | isGlobalId var -- Imported function
+ = dmdTransformSig (idStrictness var) dmd
+
+ | Just (sig, top_lvl) <- lookupSigEnv env var -- Local letrec bound thing
+ , let fn_ty = dmdTransformSig sig dmd
+ = if isTopLevel top_lvl
+ then fn_ty -- Don't record top level things
else addVarDmd fn_ty var dmd
------- LOCAL NON-LET/REC BOUND THING
- | otherwise -- Default case
+ | otherwise -- Local non-letrec-bound thing
= unitVarDmd var dmd
-
- where
- (call_depth, res_dmd) = splitCallDmd dmd
\end{code}
%************************************************************************
@@ -488,6 +413,8 @@ dmdTransform env var dmd
%************************************************************************
\begin{code}
+
+-- Recursive bindings
dmdFix :: DynFlags
-> TopLevelFlag
-> AnalEnv -- Does not include bindings for this binding
@@ -545,19 +472,19 @@ dmdFix dflags top_lvl env orig_pairs
= ((sigs', lazy_fv'), pair')
where
(sigs', lazy_fv1, pair') = dmdAnalRhs dflags top_lvl Recursive (updSigEnv env sigs) (id,rhs)
- lazy_fv' = plusVarEnv_C both lazy_fv lazy_fv1
+ lazy_fv' = plusVarEnv_C bothDmd lazy_fv lazy_fv1
same_sig sigs sigs' var = lookup sigs var == lookup sigs' var
lookup sigs var = case lookupVarEnv sigs var of
Just (sig,_) -> sig
Nothing -> pprPanic "dmdFix" (ppr var)
+-- Non-recursive bindings
dmdAnalRhs :: DynFlags -> TopLevelFlag -> RecFlag
-> AnalEnv -> (Id, CoreExpr)
-> (SigEnv, DmdEnv, (Id, CoreExpr))
-- Process the RHS of the binding, add the strictness signature
-- to the Id, and augment the environment with the signature as well.
-
dmdAnalRhs dflags top_lvl rec_flag env (id, rhs)
= (sigs', lazy_fv, (id', rhs'))
where
@@ -565,13 +492,13 @@ dmdAnalRhs dflags top_lvl rec_flag env (id, rhs)
-- The simplifier was run just beforehand
(rhs_dmd_ty, rhs') = dmdAnal dflags env (vanillaCall arity) rhs
(lazy_fv, sig_ty) = WARN( arity /= dmdTypeDepth rhs_dmd_ty && not (exprIsTrivial rhs), ppr id )
- -- The RHS can be eta-reduced to just a variable,
- -- in which case we should not complain.
- mkSigTy dflags top_lvl rec_flag id rhs rhs_dmd_ty
+ -- The RHS can be eta-reduced to just a variable,
+ -- in which case we should not complain.
+ mkSigTy top_lvl rec_flag env id rhs rhs_dmd_ty
id' = id `setIdStrictness` sig_ty
sigs' = extendSigEnv top_lvl (sigEnv env) id sig_ty
-\end{code}
+\end{code}
%************************************************************************
%* *
@@ -580,26 +507,134 @@ dmdAnalRhs dflags top_lvl rec_flag env (id, rhs)
%************************************************************************
\begin{code}
-mkTopSigTy :: DynFlags -> CoreExpr -> DmdType -> StrictSig
- -- Take a DmdType and turn it into a StrictSig
- -- NB: not used for never-inline things; hence False
-mkTopSigTy dflags rhs dmd_ty = snd (mk_sig_ty dflags False False rhs dmd_ty)
-
-mkSigTy :: DynFlags -> TopLevelFlag -> RecFlag -> Id -> CoreExpr -> DmdType -> (DmdEnv, StrictSig)
-mkSigTy dflags top_lvl rec_flag id rhs dmd_ty
- = mk_sig_ty dflags never_inline thunk_cpr_ok rhs dmd_ty
+unitVarDmd :: Var -> Demand -> DmdType
+unitVarDmd var dmd
+ = DmdType (unitVarEnv var dmd) [] topRes
+
+addVarDmd :: DmdType -> Var -> Demand -> DmdType
+addVarDmd (DmdType fv ds res) var dmd
+ = DmdType (extendVarEnv_C bothDmd fv var dmd) ds res
+
+addLazyFVs :: DmdType -> DmdEnv -> DmdType
+addLazyFVs (DmdType fv ds res) lazy_fvs
+ = DmdType both_fv1 ds res
where
- never_inline = isNeverActive (idInlineActivation id)
- maybe_id_dmd = idDemandInfo_maybe id
- -- Is Nothing the first time round
+ both_fv = plusVarEnv_C bothDmd fv lazy_fvs
+ both_fv1 = modifyEnv (isBotRes res) (`bothDmd` botDmd) lazy_fvs fv both_fv
+ -- This modifyEnv is vital. Consider
+ -- let f = \x -> (x,y)
+ -- in error (f 3)
+ -- Here, y is treated as a lazy-fv of f, but we must `bothDmd` that L
+ -- demand with the bottom coming up from 'error'
+ --
+ -- I got a loop in the fixpointer without this, due to an interaction
+ -- with the lazy_fv filtering in mkSigTy. Roughly, it was
+ -- letrec f n x
+ -- = letrec g y = x `fatbar`
+ -- letrec h z = z + ...g...
+ -- in h (f (n-1) x)
+ -- in ...
+ -- In the initial iteration for f, f=Bot
+ -- Suppose h is found to be strict in z, but the occurrence of g in its RHS
+ -- is lazy. Now consider the fixpoint iteration for g, esp the demands it
+ -- places on its free variables. Suppose it places none. Then the
+ -- x `fatbar` ...call to h...
+ -- will give a x->V demand for x. That turns into a L demand for x,
+ -- which floats out of the defn for h. Without the modifyEnv, that
+ -- L demand doesn't get both'd with the Bot coming up from the inner
+ -- call to f. So we just get an L demand for x for g.
+ --
+ -- A better way to say this is that the lazy-fv filtering should give the
+ -- same answer as putting the lazy fv demands in the function's type.
+
+
+removeFV :: DmdEnv -> Var -> DmdResult -> (DmdEnv, Demand)
+removeFV fv id res = -- pprTrace "rfv" (ppr id <+> ppr dmd $$ ppr fv)
+ (fv', dmd)
+ where
+ fv' = fv `delVarEnv` id
+ dmd = lookupVarEnv fv id `orElse` deflt
+ -- See note [Default demand for variables]
+ deflt | isBotRes res = botDmd
+ | otherwise = absDmd
+\end{code}
+
+Note [Default demand for variables]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+If the variable is not mentioned in the environment of a demand type,
+its demand is taken to be a result demand of the type: either L or the
+bottom. Both are safe from the semantical pont of view, however, for
+the safe result we also have absent demand set to Abs, which makes it
+possible to safely ignore non-mentioned variables (their joint demand
+is <L,A>).
+
+\begin{code}
+annotateBndr :: DmdType -> Var -> (DmdType, Var)
+-- The returned env has the var deleted
+-- The returned var is annotated with demand info
+-- according to the result demand of the provided demand type
+-- No effect on the argument demands
+annotateBndr dmd_ty@(DmdType fv ds res) var
+ | isTyVar var = (dmd_ty, var)
+ | otherwise = (DmdType fv' ds res, setIdDemandInfo var dmd)
+ where
+ (fv', dmd) = removeFV fv var res
+
+annotateBndrs :: DmdType -> [Var] -> (DmdType, [Var])
+annotateBndrs = mapAccumR annotateBndr
+
+annotateLamIdBndr :: DynFlags
+ -> AnalEnv
+ -> DmdType -- Demand type of body
+ -> Id -- Lambda binder
+ -> (DmdType, -- Demand type of lambda
+ Id) -- and binder annotated with demand
+
+annotateLamIdBndr dflags env (DmdType fv ds res) id
+-- For lambdas we add the demand to the argument demands
+-- Only called for Ids
+ = ASSERT( isId id )
+ (final_ty, setIdDemandInfo id dmd)
+ where
+ -- Watch out! See note [Lambda-bound unfoldings]
+ final_ty = case maybeUnfoldingTemplate (idUnfolding id) of
+ Nothing -> main_ty
+ Just unf -> main_ty `bothDmdType` unf_ty
+ where
+ (unf_ty, _) = dmdAnal dflags env dmd unf
+
+ main_ty = DmdType fv' (dmd:ds) res
+
+ (fv', dmd) = removeFV fv id res
+
+mkSigTy :: TopLevelFlag -> RecFlag -> AnalEnv -> Id ->
+ CoreExpr -> DmdType -> (DmdEnv, StrictSig)
+mkSigTy top_lvl rec_flag env id rhs (DmdType fv dmds res)
+ = (lazy_fv, mkStrictSig dmd_ty)
+ -- See Note [NOINLINE and strictness]
+ where
+ dmd_ty = mkDmdType strict_fv dmds res'
+
+ -- See Note [Lazy and strict free variables]
+ lazy_fv = filterUFM (not . isStrictDmd) fv
+ strict_fv = filterUFM isStrictDmd fv
+
+ ignore_cpr_info = not (exprIsHNF rhs || thunk_cpr_ok)
+ res' = if returnsCPR res && ignore_cpr_info
+ then topRes
+ else res
+ -- Is it okay or not to assign CPR
+ -- (not okay in the first pass)
thunk_cpr_ok -- See Note [CPR for thunks]
- | isTopLevel top_lvl = False -- Top level things don't get
- -- their demandInfo set at all
- | isRec rec_flag = False -- Ditto recursive things
- | Just dmd <- maybe_id_dmd = isStrictDmd dmd
- | otherwise = True -- Optimistic, first time round
- -- See notes below
+ | isTopLevel top_lvl = False -- Top level things don't get
+ -- their demandInfo set at all
+ | isRec rec_flag = False -- Ditto recursive things
+ | ae_virgin env = True -- Optimistic, first time round
+ -- See Note [Optimistic CPR in the "virgin" case]
+ | isStrictDmd (idDemandInfo id) = True
+ | otherwise = False
\end{code}
Note [CPR for thunks]
@@ -663,15 +698,15 @@ have a CPR in it or not. Simple solution:
NB: strictly_demanded is never true of a top-level Id, or of a recursive Id.
-Note [Optimistic in the Nothing case]
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Demand info now has a 'Nothing' state, just like strictness info.
-The analysis works from 'dangerous' towards a 'safe' state; so we
-start with botSig for 'Nothing' strictness infos, and we start with
-"yes, it's demanded" for 'Nothing' in the demand info. The
-fixpoint iteration will sort it all out.
+Note [Optimistic CPR in the "virgin" case]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Demand and strictness info are initialized by top elements. However,
+this prevents from inferring a CPR property in the first pass of the
+analyser, so we keep an explicit flag ae_virgin in the AnalEnv
+datatype.
-We can't start with 'not-demanded' because then consider
+We can't start with 'not-demanded' (i.e., top) because then consider
f x = let
t = ... I# x
in
@@ -680,9 +715,9 @@ We can't start with 'not-demanded' because then consider
In the first iteration we'd have no demand info for x, so assume
not-demanded; then we'd get TopRes for f's CPR info. Next iteration
we'd see that t was demanded, and so give it the CPR property, but by
-now f has TopRes, so it will stay TopRes. Instead, with the Nothing
-setting the first time round, we say 'yes t is demanded' the first
-time.
+now f has TopRes, so it will stay TopRes. Instead, by checking the
+ae_virgin flag at the first time round, we say 'yes t is demanded' the
+first time.
However, this does mean that for non-recursive bindings we must
iterate twice to be sure of not getting over-optimistic CPR info,
@@ -726,204 +761,40 @@ strictness. For example, if you have a function implemented by an
error stub, but which has RULES, you may want it not to be eliminated
in favour of error!
+Note [Lazy and strict free variables]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-\begin{code}
-mk_sig_ty :: DynFlags -> Bool -> Bool -> CoreExpr
- -> DmdType -> (DmdEnv, StrictSig)
-mk_sig_ty dflags _never_inline thunk_cpr_ok rhs (DmdType fv dmds res)
- = (lazy_fv, mkStrictSig dmd_ty)
- -- Re unused never_inline, see Note [NOINLINE and strictness]
- where
- dmd_ty = DmdType strict_fv final_dmds res'
-
- lazy_fv = filterUFM (not . isStrictDmd) fv
- strict_fv = filterUFM isStrictDmd fv
- -- We put the strict FVs in the DmdType of the Id, so
- -- that at its call sites we unleash demands on its strict fvs.
- -- An example is 'roll' in imaginary/wheel-sieve2
- -- Something like this:
- -- roll x = letrec
- -- go y = if ... then roll (x-1) else x+1
- -- in
- -- go ms
- -- We want to see that roll is strict in x, which is because
- -- go is called. So we put the DmdEnv for x in go's DmdType.
- --
- -- Another example:
- -- f :: Int -> Int -> Int
- -- f x y = let t = x+1
- -- h z = if z==0 then t else
- -- if z==1 then x+1 else
- -- x + h (z-1)
- -- in
- -- h y
- -- Calling h does indeed evaluate x, but we can only see
- -- that if we unleash a demand on x at the call site for t.
- --
- -- Incidentally, here's a place where lambda-lifting h would
- -- lose the cigar --- we couldn't see the joint strictness in t/x
- --
- -- ON THE OTHER HAND
- -- We don't want to put *all* the fv's from the RHS into the
- -- DmdType, because that makes fixpointing very slow --- the
- -- DmdType gets full of lazy demands that are slow to converge.
-
- final_dmds = setUnpackStrategy dflags dmds
- -- Set the unpacking strategy
-
- res' = case res of
- RetCPR | ignore_cpr_info -> TopRes
- _ -> res
- ignore_cpr_info = not (exprIsHNF rhs || thunk_cpr_ok)
-\end{code}
+We put the strict FVs in the DmdType of the Id, so
+that at its call sites we unleash demands on its strict fvs.
+An example is 'roll' in imaginary/wheel-sieve2
+Something like this:
+ roll x = letrec
+ go y = if ... then roll (x-1) else x+1
+ in
+ go ms
+We want to see that roll is strict in x, which is because
+go is called. So we put the DmdEnv for x in go's DmdType.
-The unpack strategy determines whether we'll *really* unpack the argument,
-or whether we'll just remember its strictness. If unpacking would give
-rise to a *lot* of worker args, we may decide not to unpack after all.
+Another example:
-\begin{code}
-setUnpackStrategy :: DynFlags -> [Demand] -> [Demand]
-setUnpackStrategy dflags ds
- = snd (go (maxWorkerArgs dflags - nonAbsentArgs ds) ds)
- where
- go :: Int -- Max number of args available for sub-components of [Demand]
- -> [Demand]
- -> (Int, [Demand]) -- Args remaining after subcomponents of [Demand] are unpacked
-
- go n (Eval (Prod cs) : ds)
- | n' >= 0 = Eval (Prod cs') `cons` go n'' ds
- | otherwise = Box (Eval (Prod cs)) `cons` go n ds
- where
- (n'',cs') = go n' cs
- n' = n + 1 - non_abs_args
- -- Add one to the budget 'cos we drop the top-level arg
- non_abs_args = nonAbsentArgs cs
- -- Delete # of non-absent args to which we'll now be committed
-
- go n (d:ds) = d `cons` go n ds
- go n [] = (n,[])
-
- cons d (n,ds) = (n, d:ds)
-
-nonAbsentArgs :: [Demand] -> Int
-nonAbsentArgs [] = 0
-nonAbsentArgs (Abs : ds) = nonAbsentArgs ds
-nonAbsentArgs (_ : ds) = 1 + nonAbsentArgs ds
-\end{code}
+ f :: Int -> Int -> Int
+ f x y = let t = x+1
+ h z = if z==0 then t else
+ if z==1 then x+1 else
+ x + h (z-1)
+ in h y
+Calling h does indeed evaluate x, but we can only see
+that if we unleash a demand on x at the call site for t.
-%************************************************************************
-%* *
-\subsection{Strictness signatures and types}
-%* *
-%************************************************************************
+Incidentally, here's a place where lambda-lifting h would
+lose the cigar --- we couldn't see the joint strictness in t/x
-\begin{code}
-unitVarDmd :: Var -> Demand -> DmdType
-unitVarDmd var dmd = DmdType (unitVarEnv var dmd) [] TopRes
+ ON THE OTHER HAND
+We don't want to put *all* the fv's from the RHS into the
+DmdType, because that makes fixpointing very slow --- the
+DmdType gets full of lazy demands that are slow to converge.
-addVarDmd :: DmdType -> Var -> Demand -> DmdType
-addVarDmd (DmdType fv ds res) var dmd
- = DmdType (extendVarEnv_C both fv var dmd) ds res
-
-addLazyFVs :: DmdType -> DmdEnv -> DmdType
-addLazyFVs (DmdType fv ds res) lazy_fvs
- = DmdType both_fv1 ds res
- where
- both_fv = plusVarEnv_C both fv lazy_fvs
- both_fv1 = modifyEnv (isBotRes res) (`both` Bot) lazy_fvs fv both_fv
- -- This modifyEnv is vital. Consider
- -- let f = \x -> (x,y)
- -- in error (f 3)
- -- Here, y is treated as a lazy-fv of f, but we must `both` that L
- -- demand with the bottom coming up from 'error'
- --
- -- I got a loop in the fixpointer without this, due to an interaction
- -- with the lazy_fv filtering in mkSigTy. Roughly, it was
- -- letrec f n x
- -- = letrec g y = x `fatbar`
- -- letrec h z = z + ...g...
- -- in h (f (n-1) x)
- -- in ...
- -- In the initial iteration for f, f=Bot
- -- Suppose h is found to be strict in z, but the occurrence of g in its RHS
- -- is lazy. Now consider the fixpoint iteration for g, esp the demands it
- -- places on its free variables. Suppose it places none. Then the
- -- x `fatbar` ...call to h...
- -- will give a x->V demand for x. That turns into a L demand for x,
- -- which floats out of the defn for h. Without the modifyEnv, that
- -- L demand doesn't get both'd with the Bot coming up from the inner
- -- call to f. So we just get an L demand for x for g.
- --
- -- A better way to say this is that the lazy-fv filtering should give the
- -- same answer as putting the lazy fv demands in the function's type.
-
-annotateBndr :: DmdType -> Var -> (DmdType, Var)
--- The returned env has the var deleted
--- The returned var is annotated with demand info
--- No effect on the argument demands
-annotateBndr dmd_ty@(DmdType fv ds res) var
- | isTyVar var = (dmd_ty, var)
- | otherwise = (DmdType fv' ds res, setIdDemandInfo var dmd)
- where
- (fv', dmd) = removeFV fv var res
-
-annotateBndrs :: DmdType -> [Var] -> (DmdType, [Var])
-annotateBndrs = mapAccumR annotateBndr
-
-annotateLamIdBndr :: DynFlags
- -> AnalEnv
- -> DmdType -- Demand type of body
- -> Id -- Lambda binder
- -> (DmdType, -- Demand type of lambda
- Id) -- and binder annotated with demand
-
-annotateLamIdBndr dflags env (DmdType fv ds res) id
--- For lambdas we add the demand to the argument demands
--- Only called for Ids
- = ASSERT( isId id )
- (final_ty, setIdDemandInfo id hacked_dmd)
- where
- -- Watch out! See note [Lambda-bound unfoldings]
- final_ty = case maybeUnfoldingTemplate (idUnfolding id) of
- Nothing -> main_ty
- Just unf -> main_ty `bothType` unf_ty
- where
- (unf_ty, _) = dmdAnal dflags env dmd unf
-
- main_ty = DmdType fv' (hacked_dmd:ds) res
-
- (fv', dmd) = removeFV fv id res
- hacked_dmd = argDemand dmd
- -- This call to argDemand is vital, because otherwise we label
- -- a lambda binder with demand 'B'. But in terms of calling
- -- conventions that's Abs, because we don't pass it. But
- -- when we do a w/w split we get
- -- fw x = (\x y:B -> ...) x (error "oops")
- -- And then the simplifier things the 'B' is a strict demand
- -- and evaluates the (error "oops"). Sigh
-
-removeFV :: DmdEnv -> Var -> DmdResult -> (DmdEnv, Demand)
-removeFV fv id res = (fv', zapUnlifted id dmd)
- where
- fv' = fv `delVarEnv` id
- dmd = lookupVarEnv fv id `orElse` deflt
- deflt | isBotRes res = Bot
- | otherwise = Abs
-
-zapUnlifted :: Id -> Demand -> Demand
--- For unlifted-type variables, we are only
--- interested in Bot/Abs/Box Abs
-zapUnlifted id dmd
- = case dmd of
- _ | isCoVarType ty -> lazyDmd -- For coercions, ignore str/abs totally
- Bot -> Bot
- Abs -> Abs
- _ | isUnLiftedType ty -> lazyDmd -- For unlifted types, ignore strictness
- | otherwise -> dmd
- where
- ty = idType id
-\end{code}
Note [Lamba-bound unfoldings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -995,323 +866,77 @@ nonVirgin sigs = AE { ae_sigs = sigs, ae_virgin = False }
extendSigsWithLam :: AnalEnv -> Id -> AnalEnv
-- Extend the AnalEnv when we meet a lambda binder
--- If the binder is marked demanded with a product demand, then give it a CPR
--- signature, because in the likely event that this is a lambda on a fn defn
--- [we only use this when the lambda is being consumed with a call demand],
--- it'll be w/w'd and so it will be CPR-ish. E.g.
--- f = \x::(Int,Int). if ...strict in x... then
--- x
--- else
--- (a,b)
--- We want f to have the CPR property because x does, by the time f has been w/w'd
---
--- Also note that we only want to do this for something that
--- definitely has product type, else we may get over-optimistic
--- CPR results (e.g. from \x -> x!).
-
extendSigsWithLam env id
- = case idDemandInfo_maybe id of
- Nothing -> extendAnalEnv NotTopLevel env id cprSig
- -- See Note [Optimistic in the Nothing case]
- Just (Eval (Prod _)) -> extendAnalEnv NotTopLevel env id cprSig
- _ -> env
-\end{code}
-
-Note [Initialising strictness]
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Our basic plan is to initialise the strictness of each Id in
-a recursive group to "bottom", and find a fixpoint from there.
-However, this group A might be inside an *enclosing* recursive
-group B, in which case we'll do the entire fixpoint shebang on A
-for each iteration of B.
-
-To speed things up, we initialise each iteration of B from the result
-of the last one, which is neatly recorded in each binder. That way we
-make use of earlier iterations of the fixpoint algorithm. (Cunning
-plan.)
-
-But on the *first* iteration we want to *ignore* the current strictness
-of the Id, and start from "bottom". Nowadays the Id can have a current
-strictness, because interface files record strictness for nested bindings.
-To know when we are in the first iteration, we look at the ae_virgin
-field of the AnalEnv.
-
-
-%************************************************************************
-%* *
- Demands
-%* *
-%************************************************************************
+ | ae_virgin env -- See Note [Optimistic CPR in the "virgin" case]
+ = extendAnalEnv NotTopLevel env id cprSig
-\begin{code}
-splitDmdTy :: DmdType -> (Demand, DmdType)
--- Split off one function argument
--- We already have a suitable demand on all
--- free vars, so no need to add more!
-splitDmdTy (DmdType fv (dmd:dmds) res_ty) = (dmd, DmdType fv dmds res_ty)
-splitDmdTy ty@(DmdType _ [] res_ty) = (resTypeArgDmd res_ty, ty)
-
-splitCallDmd :: Demand -> (Int, Demand)
-splitCallDmd (Call d) = case splitCallDmd d of
- (n, r) -> (n+1, r)
-splitCallDmd d = (0, d)
-
-vanillaCall :: Arity -> Demand
-vanillaCall 0 = evalDmd
-vanillaCall n = Call (vanillaCall (n-1))
-
-deferType :: DmdType -> DmdType
-deferType (DmdType fv _ _) = DmdType (deferEnv fv) [] TopRes
- -- Notice that we throw away info about both arguments and results
- -- For example, f = let ... in \x -> x
- -- We don't want to get a stricness type V->T for f.
-
-deferEnv :: DmdEnv -> DmdEnv
-deferEnv fv = mapVarEnv defer fv
-
-
-----------------
-argDemand :: Demand -> Demand
--- The 'Defer' demands are just Lazy at function boundaries
--- Ugly! Ask John how to improve it.
-argDemand Top = lazyDmd
-argDemand (Defer _) = lazyDmd
-argDemand (Eval ds) = Eval (mapDmds argDemand ds)
-argDemand (Box Bot) = evalDmd
-argDemand (Box d) = box (argDemand d)
-argDemand Bot = Abs -- Don't pass args that are consumed (only) by bottom
-argDemand d = d
-\end{code}
+ | isStrictDmd dmd_info -- Might be bottom, first time round
+ , Just {} <- deepSplitProductType_maybe $ idType id
+ = extendAnalEnv NotTopLevel env id cprSig
+ -- See Note [Initial CPR for strict binders]
-\begin{code}
--------------------------
-lubType :: DmdType -> DmdType -> DmdType
--- Consider (if x then y else []) with demand V
--- Then the first branch gives {y->V} and the second
--- *implicitly* has {y->A}. So we must put {y->(V `lub` A)}
--- in the result env.
-lubType (DmdType fv1 ds1 r1) (DmdType fv2 ds2 r2)
- = DmdType lub_fv2 (lub_ds ds1 ds2) (r1 `lubRes` r2)
- where
- lub_fv = plusVarEnv_C lub fv1 fv2
- lub_fv1 = modifyEnv (not (isBotRes r1)) absLub fv2 fv1 lub_fv
- lub_fv2 = modifyEnv (not (isBotRes r2)) absLub fv1 fv2 lub_fv1
- -- lub is the identity for Bot
-
- -- Extend the shorter argument list to match the longer
- lub_ds (d1:ds1) (d2:ds2) = lub d1 d2 : lub_ds ds1 ds2
- lub_ds [] [] = []
- lub_ds ds1 [] = map (`lub` resTypeArgDmd r2) ds1
- lub_ds [] ds2 = map (resTypeArgDmd r1 `lub`) ds2
-
------------------------------------
-bothType :: DmdType -> DmdType -> DmdType
--- (t1 `bothType` t2) takes the argument/result info from t1,
--- using t2 just for its free-var info
--- NB: Don't forget about r2! It might be BotRes, which is
--- a bottom demand on all the in-scope variables.
--- Peter: can this be done more neatly?
-bothType (DmdType fv1 ds1 r1) (DmdType fv2 _ r2)
- = DmdType both_fv2 ds1 (r1 `bothRes` r2)
+ | otherwise = env
where
- both_fv = plusVarEnv_C both fv1 fv2
- both_fv1 = modifyEnv (isBotRes r1) (`both` Bot) fv2 fv1 both_fv
- both_fv2 = modifyEnv (isBotRes r2) (`both` Bot) fv1 fv2 both_fv1
- -- both is the identity for Abs
+ dmd_info = idDemandInfo id
\end{code}
+Note [Initial CPR for strict binders]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-\begin{code}
-lubRes :: DmdResult -> DmdResult -> DmdResult
-lubRes BotRes r = r
-lubRes r BotRes = r
-lubRes RetCPR RetCPR = RetCPR
-lubRes _ _ = TopRes
-
-bothRes :: DmdResult -> DmdResult -> DmdResult
--- If either diverges, the whole thing does
--- Otherwise take CPR info from the first
-bothRes _ BotRes = BotRes
-bothRes r1 _ = r1
-\end{code}
+CPR is initialized for a lambda binder in an optimistic manner, i.e,
+if the binder is used strictly and at least some of its components as
+a product are used, which is checked by the value of the absence
+demand.
-\begin{code}
-modifyEnv :: Bool -- No-op if False
- -> (Demand -> Demand) -- The zapper
- -> DmdEnv -> DmdEnv -- Env1 and Env2
- -> DmdEnv -> DmdEnv -- Transform this env
- -- Zap anything in Env1 but not in Env2
- -- Assume: dom(env) includes dom(Env1) and dom(Env2)
-
-modifyEnv need_to_modify zapper env1 env2 env
- | need_to_modify = foldr zap env (varEnvKeys (env1 `minusUFM` env2))
- | otherwise = env
- where
- zap uniq env = addToUFM_Directly env uniq (zapper current_val)
- where
- current_val = expectJust "modifyEnv" (lookupUFM_Directly env uniq)
-\end{code}
+If the binder is marked demanded with a strict demand, then give it a
+CPR signature, because in the likely event that this is a lambda on a
+fn defn [we only use this when the lambda is being consumed with a
+call demand], it'll be w/w'd and so it will be CPR-ish. E.g.
+ f = \x::(Int,Int). if ...strict in x... then
+ x
+ else
+ (a,b)
+We want f to have the CPR property because x does, by the time f has been w/w'd
-%************************************************************************
-%* *
-\subsection{LUB and BOTH}
-%* *
-%************************************************************************
+Also note that we only want to do this for something that definitely
+has product type, else we may get over-optimistic CPR results
+(e.g. from \x -> x!).
-\begin{code}
-lub :: Demand -> Demand -> Demand
-
-lub Bot d2 = d2
-lub Abs d2 = absLub d2
-lub Top _ = Top
-lub (Defer ds1) d2 = defer (Eval ds1 `lub` d2)
-
-lub (Call d1) (Call d2) = Call (d1 `lub` d2)
-lub d1@(Call _) (Box d2) = d1 `lub` d2 -- Just strip the box
-lub (Call _) d2@(Eval _) = d2 -- Presumably seq or vanilla eval
-lub d1@(Call _) d2 = d2 `lub` d1 -- Bot, Abs, Top
-
--- For the Eval case, we use these approximation rules
--- Box Bot <= Eval (Box Bot ...)
--- Box Top <= Defer (Box Bot ...)
--- Box (Eval ds) <= Eval (map Box ds)
-lub (Eval ds1) (Eval ds2) = Eval (ds1 `lubs` ds2)
-lub (Eval ds1) (Box Bot) = Eval (mapDmds (`lub` Box Bot) ds1)
-lub (Eval ds1) (Box (Eval ds2)) = Eval (ds1 `lubs` mapDmds box ds2)
-lub (Eval ds1) (Box Abs) = deferEval (mapDmds (`lub` Box Bot) ds1)
-lub d1@(Eval _) d2 = d2 `lub` d1 -- Bot,Abs,Top,Call,Defer
-
-lub (Box d1) (Box d2) = box (d1 `lub` d2)
-lub d1@(Box _) d2 = d2 `lub` d1
-
-lubs :: Demands -> Demands -> Demands
-lubs ds1 ds2 = zipWithDmds lub ds1 ds2
-
----------------------
-box :: Demand -> Demand
--- box is the smart constructor for Box
--- It computes <B,bot> & d
--- INVARIANT: (Box d) => d = Bot, Abs, Eval
--- Seems to be no point in allowing (Box (Call d))
-box (Call d) = Call d -- The odd man out. Why?
-box (Box d) = Box d
-box (Defer _) = lazyDmd
-box Top = lazyDmd -- Box Abs and Box Top
-box Abs = lazyDmd -- are the same <B,L>
-box d = Box d -- Bot, Eval
-
----------------
-defer :: Demand -> Demand
-
--- defer is the smart constructor for Defer
--- The idea is that (Defer ds) = <U(ds), L>
---
--- It specifies what happens at a lazy function argument
--- or a lambda; the L* operator
--- Set the strictness part to L, but leave
--- the boxity side unaffected
--- It also ensures that Defer (Eval [LLLL]) = L
-
-defer Bot = Abs
-defer Abs = Abs
-defer Top = Top
-defer (Call _) = lazyDmd -- Approximation here?
-defer (Box _) = lazyDmd
-defer (Defer ds) = Defer ds
-defer (Eval ds) = deferEval ds
-
-deferEval :: Demands -> Demand
--- deferEval ds = defer (Eval ds)
-deferEval ds | allTop ds = Top
- | otherwise = Defer ds
-
----------------------
-absLub :: Demand -> Demand
--- Computes (Abs `lub` d)
--- For the Bot case consider
--- f x y = if ... then x else error x
--- Then for y we get Abs `lub` Bot, and we really
--- want Abs overall
-absLub Bot = Abs
-absLub Abs = Abs
-absLub Top = Top
-absLub (Call _) = Top
-absLub (Box _) = Top
-absLub (Eval ds) = Defer (absLubs ds) -- Or (Defer ds)?
-absLub (Defer ds) = Defer (absLubs ds) -- Or (Defer ds)?
-
-absLubs :: Demands -> Demands
-absLubs = mapDmds absLub
-
----------------
-both :: Demand -> Demand -> Demand
-
-both Abs d2 = d2
-
--- Note [Bottom demands]
-both Bot Bot = Bot
-both Bot Abs = Bot
-both Bot (Eval ds) = Eval (mapDmds (`both` Bot) ds)
-both Bot (Defer ds) = Eval (mapDmds (`both` Bot) ds)
-both Bot _ = errDmd
-
-both Top Bot = errDmd
-both Top Abs = Top
-both Top Top = Top
-both Top (Box d) = Box d
-both Top (Call d) = Call d
-both Top (Eval ds) = Eval (mapDmds (`both` Top) ds)
-both Top (Defer ds) -- = defer (Top `both` Eval ds)
- -- = defer (Eval (mapDmds (`both` Top) ds))
- = deferEval (mapDmds (`both` Top) ds)
-
-
-both (Box d1) (Box d2) = box (d1 `both` d2)
-both (Box d1) d2@(Call _) = box (d1 `both` d2)
-both (Box d1) d2@(Eval _) = box (d1 `both` d2)
-both (Box d1) (Defer _) = Box d1
-both d1@(Box _) d2 = d2 `both` d1
-
-both (Call d1) (Call d2) = Call (d1 `both` d2)
-both (Call d1) (Eval _) = Call d1 -- Could do better for (Poly Bot)?
-both (Call d1) (Defer _) = Call d1 -- Ditto
-both d1@(Call _) d2 = d2 `both` d1
-
-both (Eval ds1) (Eval ds2) = Eval (ds1 `boths` ds2)
-both (Eval ds1) (Defer ds2) = Eval (ds1 `boths` mapDmds defer ds2)
-both d1@(Eval _) d2 = d2 `both` d1
-
-both (Defer ds1) (Defer ds2) = deferEval (ds1 `boths` ds2)
-both d1@(Defer _) d2 = d2 `both` d1
-
-boths :: Demands -> Demands -> Demands
-boths ds1 ds2 = zipWithDmds both ds1 ds2
-\end{code}
-Note [Bottom demands]
-~~~~~~~~~~~~~~~~~~~~~
-Consider
- f x = error x
-From 'error' itself we get demand Bot on x
-From the arg demand on x we get
- x :-> evalDmd = Box (Eval (Poly Abs))
-So we get Bot `both` Box (Eval (Poly Abs))
- = Seq Keep (Poly Bot)
-
-Consider also
- f x = if ... then error (fst x) else fst x
-Then we get (Eval (Box Bot, Bot) `lub` Eval (SA))
- = Eval (SA)
-which is what we want.
-
-Consider also
- f x = error [fst x]
-Then we get
- x :-> Bot `both` Defer [SA]
-and we want the Bot demand to cancel out the Defer
-so that we get Eval [SA]. Otherwise we'd have the odd
-situation that
- f x = error (fst x) -- Strictness U(SA)b
- g x = error ('y':fst x) -- Strictness Tb
+Note [Initialising strictness]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+See section 9.2 (Finding fixpoints) of the paper.
+
+Our basic plan is to initialise the strictness of each Id in a
+recursive group to "bottom", and find a fixpoint from there. However,
+this group B might be inside an *enclosing* recursiveb group A, in
+which case we'll do the entire fixpoint shebang on for each iteration
+of A. This can be illustrated by the following example:
+
+Example:
+
+ f [] = []
+ f (x:xs) = let g [] = f xs
+ g (y:ys) = y+1 : g ys
+ in g (h x)
+
+At each iteration of the fixpoint for f, the analyser has to find a
+fixpoint for the enclosed function g. In the meantime, the demand
+values for g at each iteration for f are *greater* than those we
+encountered in the previous iteration for f. Therefore, we can begin
+the fixpoint for g not with the bottom value but rather with the
+result of the previous analysis. I.e., when beginning the fixpoint
+process for g, we can start from the demand signature computed for g
+previously and attached to the binding occurrence of g.
+
+To speed things up, we initialise each iteration of A (the enclosing
+one) from the result of the last one, which is neatly recorded in each
+binder. That way we make use of earlier iterations of the fixpoint
+algorithm. (Cunning plan.)
+But on the *first* iteration we want to *ignore* the current strictness
+of the Id, and start from "bottom". Nowadays the Id can have a current
+strictness, because interface files record strictness for nested bindings.
+To know when we are in the first iteration, we look at the ae_virgin
+field of the AnalEnv.
diff --git a/compiler/stranal/WorkWrap.lhs b/compiler/stranal/WorkWrap.lhs
index 5be63a9bc7..e697dfe1ff 100644
--- a/compiler/stranal/WorkWrap.lhs
+++ b/compiler/stranal/WorkWrap.lhs
@@ -21,12 +21,11 @@ import Var
import Id
import Type ( Type )
import IdInfo
-import Demand
import UniqSupply
import BasicTypes
import DynFlags
import VarEnv ( isEmptyVarEnv )
-import Maybes ( orElse )
+import Demand
import WwLib
import Util
import Outputable
@@ -258,7 +257,7 @@ tryWW dflags is_rec fn_id rhs
-- Furthermore, don't even expose strictness info
= return [ (fn_id, rhs) ]
- | is_thunk && worthSplittingThunk maybe_fn_dmd res_info
+ | is_thunk && worthSplittingThunk fn_dmd res_info
-- See Note [Thunk splitting]
= ASSERT2( isNonRec is_rec, ppr new_fn_id ) -- The thunk must be non-recursive
checkSize dflags new_fn_id rhs $
@@ -273,12 +272,12 @@ tryWW dflags is_rec fn_id rhs
where
fn_info = idInfo fn_id
- maybe_fn_dmd = demandInfo fn_info
+ fn_dmd = demandInfo fn_info
inline_act = inlinePragmaActivation (inlinePragInfo fn_info)
-- In practice it always will have a strictness
-- signature, even if it's a uninformative one
- strict_sig = strictnessInfo fn_info `orElse` topSig
+ strict_sig = strictnessInfo fn_info
StrictSig (DmdType env wrap_dmds res_info) = strict_sig
-- new_fn_id has the DmdEnv zapped.
@@ -376,8 +375,8 @@ splitFun dflags fn_id fn_info wrap_dmds res_info rhs
-- The arity is set by the simplifier using exprEtaExpandArity
-- So it may be more than the number of top-level-visible lambdas
- work_res_info | isBotRes res_info = BotRes -- Cpr stuff done by wrapper
- | otherwise = TopRes
+ work_res_info | isBotRes res_info = botRes -- Cpr stuff done by wrapper
+ | otherwise = topRes
one_shots = get_one_shots rhs
@@ -451,51 +450,6 @@ splitThunk dflags fn_id rhs = do
%************************************************************************
%* *
-\subsection{Functions over Demands}
-%* *
-%************************************************************************
-
-\begin{code}
-worthSplittingFun :: [Demand] -> DmdResult -> Bool
- -- True <=> the wrapper would not be an identity function
-worthSplittingFun ds res
- = any worth_it ds || returnsCPR res
- -- worthSplitting returns False for an empty list of demands,
- -- and hence do_strict_ww is False if arity is zero and there is no CPR
- -- See Note [Worker-wrapper for bottoming functions]
- where
- worth_it Abs = True -- Absent arg
- worth_it (Eval (Prod _)) = True -- Product arg to evaluate
- worth_it _ = False
-
-worthSplittingThunk :: Maybe Demand -- Demand on the thunk
- -> DmdResult -- CPR info for the thunk
- -> Bool
-worthSplittingThunk maybe_dmd res
- = worth_it maybe_dmd || returnsCPR res
- where
- -- Split if the thing is unpacked
- worth_it (Just (Eval (Prod ds))) = not (all isAbsent ds)
- worth_it _ = False
-\end{code}
-
-Note [Worker-wrapper for bottoming functions]
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-We used not to split if the result is bottom.
-[Justification: there's no efficiency to be gained.]
-
-But it's sometimes bad not to make a wrapper. Consider
- fw = \x# -> let x = I# x# in case e of
- p1 -> error_fn x
- p2 -> error_fn x
- p3 -> the real stuff
-The re-boxing code won't go away unless error_fn gets a wrapper too.
-[We don't do reboxing now, but in general it's better to pass an
-unboxed thing to f, and have it reboxed in the error cases....]
-
-
-%************************************************************************
-%* *
\subsection{The worker wrapper core}
%* *
%************************************************************************
diff --git a/compiler/stranal/WwLib.lhs b/compiler/stranal/WwLib.lhs
index 8aaa13171c..1cbebf8c23 100644
--- a/compiler/stranal/WwLib.lhs
+++ b/compiler/stranal/WwLib.lhs
@@ -11,7 +11,7 @@
-- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details
-module WwLib ( mkWwBodies, mkWWstr, mkWorkerArgs ) where
+module WwLib ( mkWwBodies, mkWWstr, mkWorkerArgs, deepSplitProductType_maybe ) where
#include "HsVersions.h"
@@ -23,7 +23,7 @@ import Id ( Id, idType, mkSysLocal, idDemandInfo, setIdDemandInfo,
)
import IdInfo ( vanillaIdInfo )
import DataCon
-import Demand ( Demand(..), DmdResult(..), Demands(..) )
+import Demand
import MkCore ( mkRuntimeErrorApp, aBSENT_ERROR_ID )
import MkId ( realWorldPrimId, voidArgId
, wrapNewTypeBody, unwrapNewTypeBody )
@@ -36,7 +36,7 @@ import Literal ( absentLiteralOf )
import TyCon
import UniqSupply
import Unique
-import Util ( zipWithEqual )
+import Util
import Outputable
import DynFlags
import FastString
@@ -133,13 +133,14 @@ mkWwBodies :: DynFlags
mkWwBodies dflags fun_ty demands res_info one_shots
= do { let arg_info = demands `zip` (one_shots ++ repeat False)
+ all_one_shots = all snd arg_info
; (wrap_args, wrap_fn_args, work_fn_args, res_ty) <- mkWWargs emptyTvSubst fun_ty arg_info
; (work_args, wrap_fn_str, work_fn_str) <- mkWWstr dflags wrap_args
-- Do CPR w/w. See Note [Always do CPR w/w]
; (wrap_fn_cpr, work_fn_cpr, cpr_res_ty) <- mkWWcpr res_ty res_info
- ; let (work_lam_args, work_call_args) = mkWorkerArgs work_args cpr_res_ty
+ ; let (work_lam_args, work_call_args) = mkWorkerArgs work_args all_one_shots cpr_res_ty
; return ([idDemandInfo v | v <- work_call_args, isId v],
wrap_fn_args . wrap_fn_cpr . wrap_fn_str . applyToVars work_call_args . Var,
mkLams work_lam_args. work_fn_str . work_fn_cpr . work_fn_args) }
@@ -184,16 +185,39 @@ We use the state-token type which generates no code.
\begin{code}
mkWorkerArgs :: [Var]
+ -> Bool -- Whether all arguments are one-shot
-> Type -- Type of body
-> ([Var], -- Lambda bound args
[Var]) -- Args at call site
-mkWorkerArgs args res_ty
+mkWorkerArgs args all_one_shot res_ty
| any isId args || not (isUnLiftedType res_ty)
= (args, args)
| otherwise
- = (args ++ [voidArgId], args ++ [realWorldPrimId])
+ = (args ++ [newArg], args ++ [realWorldPrimId])
+ where
+ -- see Note [All One-Shot Arguments of a Worker]
+ newArg = if all_one_shot
+ then setOneShotLambda voidArgId
+ else voidArgId
\end{code}
+Note [All One-Shot Arguments of a Worker]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Sometimes, derived joint-points are just lambda-lifted thunks, whose
+only argument is of the unit type and is never used. This might
+interfere with the absence analysis, basing on which results these
+never-used arguments are eliminated in the worker. The additional
+argument `all_one_shot` of `mkWorkerArgs` is to prevent this.
+
+An example for this phenomenon is a `treejoin` program from the
+`nofib` suite, which features the following joint points:
+
+$j_s1l1 =
+ \ _ ->
+ case GHC.Prim.<=# 56320 y_aOy of _ {
+ GHC.Types.False -> $j_s1kP GHC.Prim.realWorld#;
+ GHC.Types.True -> ... }
%************************************************************************
%* *
@@ -342,6 +366,24 @@ mkWWstr dflags (arg : args) = do
(args2, wrap_fn2, work_fn2) <- mkWWstr dflags args
return (args1 ++ args2, wrap_fn1 . wrap_fn2, work_fn1 . work_fn2)
+\end{code}
+
+Note [Unpacking arguments with product and polymorphic demands]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+The argument is unpacked in a case if it has a product type and has a
+strict and used demand put on it. I.e., arguments, with demands such
+as the following ones:
+
+<S,U(U, L)>
+<S(L,S),U>
+
+will be unpacked. Moreover, for arguments whose demand is <S,U> or
+<S,H>, we take an advantage of the polymorphic nature of S and U and
+replicate the enclosed demand correspondingly (see definition of
+replicateDmd).
+
+
+\begin{code}
----------------------
-- mkWWstr_one wrap_arg = (work_args, wrap_fn, work_fn)
-- * wrap_fn assumes wrap_arg is in scope,
@@ -353,39 +395,19 @@ mkWWstr_one dflags arg
| isTyVar arg
= return ([arg], nop_fn, nop_fn)
- | otherwise
- = case idDemandInfo arg of
-
- -- Absent case. We can't always handle absence for arbitrary
- -- unlifted types, so we need to choose just the cases we can
- -- (that's what mk_absent_let does)
- Abs | Just work_fn <- mk_absent_let dflags arg
- -> return ([], nop_fn, work_fn)
-
- -- Unpack case
- Eval (Prod cs)
- | Just (_arg_tycon, _tycon_arg_tys, data_con, inst_con_arg_tys)
- <- deepSplitProductType_maybe (idType arg)
- -> do uniqs <- getUniquesM
- let
- unpk_args = zipWith mk_ww_local uniqs inst_con_arg_tys
- unpk_args_w_ds = zipWithEqual "mkWWstr" set_worker_arg_info unpk_args cs
- unbox_fn = mkUnpackCase (sanitiseCaseBndr arg) (Var arg) unpk_args data_con
- rebox_fn = Let (NonRec arg con_app)
- con_app = mkProductBox unpk_args (idType arg)
- (worker_args, wrap_fn, work_fn) <- mkWWstr dflags unpk_args_w_ds
- return (worker_args, unbox_fn . wrap_fn, work_fn . rebox_fn)
- -- Don't pass the arg, rebox instead
-
- -- `seq` demand; evaluate in wrapper in the hope
- -- of dropping seqs in the worker
- Eval (Poly Abs)
- -> let
- arg_w_unf = arg `setIdUnfolding` evaldUnfolding
- -- Tell the worker arg that it's sure to be evaluated
- -- so that internal seqs can be dropped
- in
- return ([arg_w_unf], mk_seq_case arg, nop_fn)
+ | isAbsDmd dmd
+ , Just work_fn <- mk_absent_let dflags arg
+ -- Absent case. We can't always handle absence for arbitrary
+ -- unlifted types, so we need to choose just the cases we can
+ --- (that's what mk_absent_let does)
+ = return ([], nop_fn, work_fn)
+
+ | isSeqDmd dmd -- `seq` demand; evaluate in wrapper in the hope
+ -- of dropping seqs in the worker
+ = let arg_w_unf = arg `setIdUnfolding` evaldUnfolding
+ -- Tell the worker arg that it's sure to be evaluated
+ -- so that internal seqs can be dropped
+ in return ([arg_w_unf], mk_seq_case arg, nop_fn)
-- Pass the arg, anyway, even if it is in theory discarded
-- Consider
-- f x y = x `seq` y
@@ -398,11 +420,28 @@ mkWWstr_one dflags arg
-- we end up evaluating the absent thunk.
-- But the Evald flag is pretty weird, and I worry that it might disappear
-- during simplification, so for now I've just nuked this whole case
+
+ -- Unpack case,
+ -- see note [Unpacking arguments with product and polymorphic demands]
+ | isStrictDmd dmd
+ , Just (_arg_tycon, _tycon_arg_tys, data_con, inst_con_arg_tys)
+ <- deepSplitProductType_maybe (idType arg)
+ = do { uniqs <- getUniquesM
+ ; let cs = splitProdDmd (length inst_con_arg_tys) dmd
+ unpk_args = zipWith mk_ww_local uniqs inst_con_arg_tys
+ unpk_args_w_ds = zipWithEqual "mkWWstr" set_worker_arg_info unpk_args cs
+ unbox_fn = mkUnpackCase (sanitiseCaseBndr arg) (Var arg) unpk_args data_con
+ rebox_fn = Let (NonRec arg con_app)
+ con_app = mkProductBox unpk_args (idType arg)
+ ; (worker_args, wrap_fn, work_fn) <- mkWWstr dflags unpk_args_w_ds
+ ; return (worker_args, unbox_fn . wrap_fn, work_fn . rebox_fn) }
+ -- Don't pass the arg, rebox instead
- -- Other cases
- _other_demand -> return ([arg], nop_fn, nop_fn)
+ | otherwise -- Other cases
+ = return ([arg], nop_fn, nop_fn)
where
+ dmd = idDemandInfo arg
-- If the wrapper argument is a one-shot lambda, then
-- so should (all) the corresponding worker arguments be
-- This bites when we do w/w on a case join point
@@ -416,8 +455,6 @@ nop_fn :: CoreExpr -> CoreExpr
nop_fn body = body
\end{code}
-
-
\begin{code}
mkUnpackCase :: Id -> CoreExpr -> [Id] -> DataCon -> CoreExpr -> CoreExpr
-- (mkUnpackCase x e args Con body)
@@ -496,7 +533,10 @@ mkWWcpr :: Type -- function body type
CoreExpr -> CoreExpr, -- New worker
Type) -- Type of worker's body
-mkWWcpr body_ty RetCPR
+mkWWcpr body_ty res
+ | not (returnsCPR res) -- No CPR info
+ = return (id, id, body_ty)
+
| not (isClosedAlgType body_ty)
= WARN( True,
text "mkWWcpr: non-algebraic or open body type" <+> ppr body_ty )
@@ -537,9 +577,6 @@ mkWWcpr body_ty RetCPR
n_con_args = length con_arg_tys
con_arg_ty1 = head con_arg_tys
-mkWWcpr body_ty _other -- No CPR info
- = return (id, id, body_ty)
-
-- If the original function looked like
-- f = \ x -> _scc_ "foo" E
--