summaryrefslogtreecommitdiff
path: root/lib/crypto/crypto_scrypt-sse.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/crypto/crypto_scrypt-sse.c')
-rw-r--r--lib/crypto/crypto_scrypt-sse.c365
1 files changed, 0 insertions, 365 deletions
diff --git a/lib/crypto/crypto_scrypt-sse.c b/lib/crypto/crypto_scrypt-sse.c
deleted file mode 100644
index 0e6ff33..0000000
--- a/lib/crypto/crypto_scrypt-sse.c
+++ /dev/null
@@ -1,365 +0,0 @@
-/*-
- * Copyright 2009 Colin Percival
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * This file was originally written by Colin Percival as part of the Tarsnap
- * online backup system.
- */
-
-#include <sys/types.h>
-#include <sys/mman.h>
-
-#include <emmintrin.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <string.h>
-
-#include "sha256.h"
-#include "sysendian.h"
-
-#include "crypto_scrypt.h"
-
-static void blkcpy(void *, void *, size_t);
-static void blkxor(void *, void *, size_t);
-static void salsa20_8(__m128i *);
-static void blockmix_salsa8(__m128i *, __m128i *, __m128i *, size_t);
-static uint64_t integerify(void *, size_t);
-static void smix(uint8_t *, size_t, uint64_t, void *, void *);
-
-static void
-blkcpy(void * dest, void * src, size_t len)
-{
- __m128i * D = dest;
- __m128i * S = src;
- size_t L = len / 16;
- size_t i;
-
- for (i = 0; i < L; i++)
- D[i] = S[i];
-}
-
-static void
-blkxor(void * dest, void * src, size_t len)
-{
- __m128i * D = dest;
- __m128i * S = src;
- size_t L = len / 16;
- size_t i;
-
- for (i = 0; i < L; i++)
- D[i] = _mm_xor_si128(D[i], S[i]);
-}
-
-/**
- * salsa20_8(B):
- * Apply the salsa20/8 core to the provided block.
- */
-static void
-salsa20_8(__m128i B[4])
-{
- __m128i X0, X1, X2, X3;
- __m128i T;
- size_t i;
-
- X0 = B[0];
- X1 = B[1];
- X2 = B[2];
- X3 = B[3];
-
- for (i = 0; i < 8; i += 2) {
- /* Operate on "columns". */
- T = _mm_add_epi32(X0, X3);
- X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7));
- X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25));
- T = _mm_add_epi32(X1, X0);
- X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
- X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
- T = _mm_add_epi32(X2, X1);
- X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13));
- X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19));
- T = _mm_add_epi32(X3, X2);
- X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
- X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
-
- /* Rearrange data. */
- X1 = _mm_shuffle_epi32(X1, 0x93);
- X2 = _mm_shuffle_epi32(X2, 0x4E);
- X3 = _mm_shuffle_epi32(X3, 0x39);
-
- /* Operate on "rows". */
- T = _mm_add_epi32(X0, X1);
- X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7));
- X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25));
- T = _mm_add_epi32(X3, X0);
- X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
- X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
- T = _mm_add_epi32(X2, X3);
- X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13));
- X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19));
- T = _mm_add_epi32(X1, X2);
- X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
- X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
-
- /* Rearrange data. */
- X1 = _mm_shuffle_epi32(X1, 0x39);
- X2 = _mm_shuffle_epi32(X2, 0x4E);
- X3 = _mm_shuffle_epi32(X3, 0x93);
- }
-
- B[0] = _mm_add_epi32(B[0], X0);
- B[1] = _mm_add_epi32(B[1], X1);
- B[2] = _mm_add_epi32(B[2], X2);
- B[3] = _mm_add_epi32(B[3], X3);
-}
-
-/**
- * blockmix_salsa8(Bin, Bout, X, r):
- * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
- * bytes in length; the output Bout must also be the same size. The
- * temporary space X must be 64 bytes.
- */
-static void
-blockmix_salsa8(__m128i * Bin, __m128i * Bout, __m128i * X, size_t r)
-{
- size_t i;
-
- /* 1: X <-- B_{2r - 1} */
- blkcpy(X, &Bin[8 * r - 4], 64);
-
- /* 2: for i = 0 to 2r - 1 do */
- for (i = 0; i < r; i++) {
- /* 3: X <-- H(X \xor B_i) */
- blkxor(X, &Bin[i * 8], 64);
- salsa20_8(X);
-
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- blkcpy(&Bout[i * 4], X, 64);
-
- /* 3: X <-- H(X \xor B_i) */
- blkxor(X, &Bin[i * 8 + 4], 64);
- salsa20_8(X);
-
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- blkcpy(&Bout[(r + i) * 4], X, 64);
- }
-}
-
-/**
- * integerify(B, r):
- * Return the result of parsing B_{2r-1} as a little-endian integer.
- */
-static uint64_t
-integerify(void * B, size_t r)
-{
- uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64);
-
- return (((uint64_t)(X[13]) << 32) + X[0]);
-}
-
-/**
- * smix(B, r, N, V, XY):
- * Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
- * the temporary storage V must be 128rN bytes in length; the temporary
- * storage XY must be 256r + 64 bytes in length. The value N must be a
- * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
- * multiple of 64 bytes.
- */
-static void
-smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
-{
- __m128i * X = XY;
- __m128i * Y = (void *)((uintptr_t)(XY) + 128 * r);
- __m128i * Z = (void *)((uintptr_t)(XY) + 256 * r);
- uint32_t * X32 = (void *)X;
- uint64_t i, j;
- size_t k;
-
- /* 1: X <-- B */
- for (k = 0; k < 2 * r; k++) {
- for (i = 0; i < 16; i++) {
- X32[k * 16 + i] =
- le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
- }
- }
-
- /* 2: for i = 0 to N - 1 do */
- for (i = 0; i < N; i += 2) {
- /* 3: V_i <-- X */
- blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);
-
- /* 4: X <-- H(X) */
- blockmix_salsa8(X, Y, Z, r);
-
- /* 3: V_i <-- X */
- blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
- Y, 128 * r);
-
- /* 4: X <-- H(X) */
- blockmix_salsa8(Y, X, Z, r);
- }
-
- /* 6: for i = 0 to N - 1 do */
- for (i = 0; i < N; i += 2) {
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(X, r) & (N - 1);
-
- /* 8: X <-- H(X \xor V_j) */
- blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
- blockmix_salsa8(X, Y, Z, r);
-
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(Y, r) & (N - 1);
-
- /* 8: X <-- H(X \xor V_j) */
- blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
- blockmix_salsa8(Y, X, Z, r);
- }
-
- /* 10: B' <-- X */
- for (k = 0; k < 2 * r; k++) {
- for (i = 0; i < 16; i++) {
- le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
- X32[k * 16 + i]);
- }
- }
-}
-
-/**
- * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
- * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
- * p, buflen) and write the result into buf. The parameters r, p, and buflen
- * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
- * must be a power of 2 greater than 1.
- *
- * Return 0 on success; or -1 on error.
- */
-int
-crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
- const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
- uint8_t * buf, size_t buflen)
-{
- void * B0, * V0, * XY0;
- uint8_t * B;
- uint32_t * V;
- uint32_t * XY;
- uint32_t i;
-
- /* Sanity-check parameters. */
-#if SIZE_MAX > UINT32_MAX
- if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
- errno = EFBIG;
- goto err0;
- }
-#endif
- if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
- errno = EFBIG;
- goto err0;
- }
- if (((N & (N - 1)) != 0) || (N == 0)) {
- errno = EINVAL;
- goto err0;
- }
- if ((r > SIZE_MAX / 128 / p) ||
-#if SIZE_MAX / 256 <= UINT32_MAX
- (r > (SIZE_MAX - 64) / 256) ||
-#endif
- (N > SIZE_MAX / 128 / r)) {
- errno = ENOMEM;
- goto err0;
- }
-
- /* Allocate memory. */
-#ifdef HAVE_POSIX_MEMALIGN
- if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
- goto err0;
- B = (uint8_t *)(B0);
- if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
- goto err1;
- XY = (uint32_t *)(XY0);
-#ifndef MAP_ANON
- if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0)
- goto err2;
- V = (uint32_t *)(V0);
-#endif
-#else
- if ((B0 = malloc(128 * r * p + 63)) == NULL)
- goto err0;
- B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
- if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
- goto err1;
- XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
-#ifndef MAP_ANON
- if ((V0 = malloc(128 * r * N + 63)) == NULL)
- goto err2;
- V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
-#endif
-#endif
-#ifdef MAP_ANON
- if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
-#ifdef MAP_NOCORE
- MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
-#else
- MAP_ANON | MAP_PRIVATE,
-#endif
- -1, 0)) == MAP_FAILED)
- goto err2;
- V = (uint32_t *)(V0);
-#endif
-
- /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
- PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
-
- /* 2: for i = 0 to p - 1 do */
- for (i = 0; i < p; i++) {
- /* 3: B_i <-- MF(B_i, N) */
- smix(&B[i * 128 * r], r, N, V, XY);
- }
-
- /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
- PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
-
- /* Free memory. */
-#ifdef MAP_ANON
- if (munmap(V0, 128 * r * N))
- goto err2;
-#else
- free(V0);
-#endif
- free(XY0);
- free(B0);
-
- /* Success! */
- return (0);
-
-err2:
- free(XY0);
-err1:
- free(B0);
-err0:
- /* Failure! */
- return (-1);
-}