summaryrefslogtreecommitdiff
path: root/lib/crypto
diff options
context:
space:
mode:
Diffstat (limited to 'lib/crypto')
-rw-r--r--lib/crypto/crypto_aesctr.c123
-rw-r--r--lib/crypto/crypto_aesctr.h59
-rw-r--r--lib/crypto/crypto_scrypt-nosse.c337
-rw-r--r--lib/crypto/crypto_scrypt-ref.c283
-rw-r--r--lib/crypto/crypto_scrypt-sse.c365
-rw-r--r--lib/crypto/crypto_scrypt.h46
-rw-r--r--lib/crypto/sha256.c411
-rw-r--r--lib/crypto/sha256.h62
8 files changed, 0 insertions, 1686 deletions
diff --git a/lib/crypto/crypto_aesctr.c b/lib/crypto/crypto_aesctr.c
deleted file mode 100644
index bc7479c..0000000
--- a/lib/crypto/crypto_aesctr.c
+++ /dev/null
@@ -1,123 +0,0 @@
-/*-
- * Copyright 2007-2009 Colin Percival
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * This file was originally written by Colin Percival as part of the Tarsnap
- * online backup system.
- */
-
-#include <stdint.h>
-#include <stdlib.h>
-
-#include <openssl/aes.h>
-
-#include "sysendian.h"
-
-#include "crypto_aesctr.h"
-
-struct crypto_aesctr {
- AES_KEY * key;
- uint64_t nonce;
- uint64_t bytectr;
- uint8_t buf[16];
-};
-
-/**
- * crypto_aesctr_init(key, nonce):
- * Prepare to encrypt/decrypt data with AES in CTR mode, using the provided
- * expanded key and nonce. The key provided must remain valid for the
- * lifetime of the stream.
- */
-struct crypto_aesctr *
-crypto_aesctr_init(AES_KEY * key, uint64_t nonce)
-{
- struct crypto_aesctr * stream;
-
- /* Allocate memory. */
- if ((stream = malloc(sizeof(struct crypto_aesctr))) == NULL)
- goto err0;
-
- /* Initialize values. */
- stream->key = key;
- stream->nonce = nonce;
- stream->bytectr = 0;
-
- /* Success! */
- return (stream);
-
-err0:
- /* Failure! */
- return (NULL);
-}
-
-/**
- * crypto_aesctr_stream(stream, inbuf, outbuf, buflen):
- * Generate the next ${buflen} bytes of the AES-CTR stream and xor them with
- * bytes from ${inbuf}, writing the result into ${outbuf}. If the buffers
- * ${inbuf} and ${outbuf} overlap, they must be identical.
- */
-void
-crypto_aesctr_stream(struct crypto_aesctr * stream, const uint8_t * inbuf,
- uint8_t * outbuf, size_t buflen)
-{
- uint8_t pblk[16];
- size_t pos;
- int bytemod;
-
- for (pos = 0; pos < buflen; pos++) {
- /* How far through the buffer are we? */
- bytemod = stream->bytectr % 16;
-
- /* Generate a block of cipherstream if needed. */
- if (bytemod == 0) {
- be64enc(pblk, stream->nonce);
- be64enc(pblk + 8, stream->bytectr / 16);
- AES_encrypt(pblk, stream->buf, stream->key);
- }
-
- /* Encrypt a byte. */
- outbuf[pos] = inbuf[pos] ^ stream->buf[bytemod];
-
- /* Move to the next byte of cipherstream. */
- stream->bytectr += 1;
- }
-}
-
-/**
- * crypto_aesctr_free(stream):
- * Free the provided stream object.
- */
-void
-crypto_aesctr_free(struct crypto_aesctr * stream)
-{
- int i;
-
- /* Zero potentially sensitive information. */
- for (i = 0; i < 16; i++)
- stream->buf[i] = 0;
- stream->bytectr = stream->nonce = 0;
-
- /* Free the stream. */
- free(stream);
-}
diff --git a/lib/crypto/crypto_aesctr.h b/lib/crypto/crypto_aesctr.h
deleted file mode 100644
index b50398f..0000000
--- a/lib/crypto/crypto_aesctr.h
+++ /dev/null
@@ -1,59 +0,0 @@
-/*-
- * Copyright 2009 Colin Percival
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * This file was originally written by Colin Percival as part of the Tarsnap
- * online backup system.
- */
-#ifndef _CRYPTO_AESCTR_H_
-#define _CRYPTO_AESCTR_H_
-
-#include <stdint.h>
-
-#include <openssl/aes.h>
-
-/**
- * crypto_aesctr_init(key, nonce):
- * Prepare to encrypt/decrypt data with AES in CTR mode, using the provided
- * expanded key and nonce. The key provided must remain valid for the
- * lifetime of the stream.
- */
-struct crypto_aesctr * crypto_aesctr_init(AES_KEY *, uint64_t);
-
-/**
- * crypto_aesctr_stream(stream, inbuf, outbuf, buflen):
- * Generate the next ${buflen} bytes of the AES-CTR stream and xor them with
- * bytes from ${inbuf}, writing the result into ${outbuf}. If the buffers
- * ${inbuf} and ${outbuf} overlap, they must be identical.
- */
-void crypto_aesctr_stream(struct crypto_aesctr *, const uint8_t *,
- uint8_t *, size_t);
-
-/**
- * crypto_aesctr_free(stream):
- * Free the provided stream object.
- */
-void crypto_aesctr_free(struct crypto_aesctr *);
-
-#endif /* !_CRYPTO_AESCTR_H_ */
diff --git a/lib/crypto/crypto_scrypt-nosse.c b/lib/crypto/crypto_scrypt-nosse.c
deleted file mode 100644
index 9389029..0000000
--- a/lib/crypto/crypto_scrypt-nosse.c
+++ /dev/null
@@ -1,337 +0,0 @@
-/*-
- * Copyright 2009 Colin Percival
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * This file was originally written by Colin Percival as part of the Tarsnap
- * online backup system.
- */
-
-#include <sys/types.h>
-#include <sys/mman.h>
-
-#include <errno.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <string.h>
-
-#include "sha256.h"
-#include "sysendian.h"
-
-#include "crypto_scrypt.h"
-
-static void blkcpy(void *, void *, size_t);
-static void blkxor(void *, void *, size_t);
-static void salsa20_8(uint32_t[16]);
-static void blockmix_salsa8(uint32_t *, uint32_t *, uint32_t *, size_t);
-static uint64_t integerify(void *, size_t);
-static void smix(uint8_t *, size_t, uint64_t, uint32_t *, uint32_t *);
-
-static void
-blkcpy(void * dest, void * src, size_t len)
-{
- size_t * D = dest;
- size_t * S = src;
- size_t L = len / sizeof(size_t);
- size_t i;
-
- for (i = 0; i < L; i++)
- D[i] = S[i];
-}
-
-static void
-blkxor(void * dest, void * src, size_t len)
-{
- size_t * D = dest;
- size_t * S = src;
- size_t L = len / sizeof(size_t);
- size_t i;
-
- for (i = 0; i < L; i++)
- D[i] ^= S[i];
-}
-
-/**
- * salsa20_8(B):
- * Apply the salsa20/8 core to the provided block.
- */
-static void
-salsa20_8(uint32_t B[16])
-{
- uint32_t x[16];
- size_t i;
-
- blkcpy(x, B, 64);
- for (i = 0; i < 8; i += 2) {
-#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
- /* Operate on columns. */
- x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
- x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
-
- x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
- x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
-
- x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
- x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
-
- x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
- x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
-
- /* Operate on rows. */
- x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
- x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
-
- x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
- x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
-
- x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
- x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
-
- x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
- x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
-#undef R
- }
- for (i = 0; i < 16; i++)
- B[i] += x[i];
-}
-
-/**
- * blockmix_salsa8(Bin, Bout, X, r):
- * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
- * bytes in length; the output Bout must also be the same size. The
- * temporary space X must be 64 bytes.
- */
-static void
-blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r)
-{
- size_t i;
-
- /* 1: X <-- B_{2r - 1} */
- blkcpy(X, &Bin[(2 * r - 1) * 16], 64);
-
- /* 2: for i = 0 to 2r - 1 do */
- for (i = 0; i < 2 * r; i += 2) {
- /* 3: X <-- H(X \xor B_i) */
- blkxor(X, &Bin[i * 16], 64);
- salsa20_8(X);
-
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- blkcpy(&Bout[i * 8], X, 64);
-
- /* 3: X <-- H(X \xor B_i) */
- blkxor(X, &Bin[i * 16 + 16], 64);
- salsa20_8(X);
-
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- blkcpy(&Bout[i * 8 + r * 16], X, 64);
- }
-}
-
-/**
- * integerify(B, r):
- * Return the result of parsing B_{2r-1} as a little-endian integer.
- */
-static uint64_t
-integerify(void * B, size_t r)
-{
- uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64);
-
- return (((uint64_t)(X[1]) << 32) + X[0]);
-}
-
-/**
- * smix(B, r, N, V, XY):
- * Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
- * the temporary storage V must be 128rN bytes in length; the temporary
- * storage XY must be 256r + 64 bytes in length. The value N must be a
- * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
- * multiple of 64 bytes.
- */
-static void
-smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY)
-{
- uint32_t * X = XY;
- uint32_t * Y = &XY[32 * r];
- uint32_t * Z = &XY[64 * r];
- uint64_t i;
- uint64_t j;
- size_t k;
-
- /* 1: X <-- B */
- for (k = 0; k < 32 * r; k++)
- X[k] = le32dec(&B[4 * k]);
-
- /* 2: for i = 0 to N - 1 do */
- for (i = 0; i < N; i += 2) {
- /* 3: V_i <-- X */
- blkcpy(&V[i * (32 * r)], X, 128 * r);
-
- /* 4: X <-- H(X) */
- blockmix_salsa8(X, Y, Z, r);
-
- /* 3: V_i <-- X */
- blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r);
-
- /* 4: X <-- H(X) */
- blockmix_salsa8(Y, X, Z, r);
- }
-
- /* 6: for i = 0 to N - 1 do */
- for (i = 0; i < N; i += 2) {
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(X, r) & (N - 1);
-
- /* 8: X <-- H(X \xor V_j) */
- blkxor(X, &V[j * (32 * r)], 128 * r);
- blockmix_salsa8(X, Y, Z, r);
-
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(Y, r) & (N - 1);
-
- /* 8: X <-- H(X \xor V_j) */
- blkxor(Y, &V[j * (32 * r)], 128 * r);
- blockmix_salsa8(Y, X, Z, r);
- }
-
- /* 10: B' <-- X */
- for (k = 0; k < 32 * r; k++)
- le32enc(&B[4 * k], X[k]);
-}
-
-/**
- * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
- * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
- * p, buflen) and write the result into buf. The parameters r, p, and buflen
- * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
- * must be a power of 2 greater than 1.
- *
- * Return 0 on success; or -1 on error.
- */
-int
-crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
- const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
- uint8_t * buf, size_t buflen)
-{
- void * B0, * V0, * XY0;
- uint8_t * B;
- uint32_t * V;
- uint32_t * XY;
- uint32_t i;
-
- /* Sanity-check parameters. */
-#if SIZE_MAX > UINT32_MAX
- if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
- errno = EFBIG;
- goto err0;
- }
-#endif
- if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
- errno = EFBIG;
- goto err0;
- }
- if (((N & (N - 1)) != 0) || (N == 0)) {
- errno = EINVAL;
- goto err0;
- }
- if ((r > SIZE_MAX / 128 / p) ||
-#if SIZE_MAX / 256 <= UINT32_MAX
- (r > SIZE_MAX / 256) ||
-#endif
- (N > SIZE_MAX / 128 / r)) {
- errno = ENOMEM;
- goto err0;
- }
-
- /* Allocate memory. */
-#ifdef HAVE_POSIX_MEMALIGN
- if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
- goto err0;
- B = (uint8_t *)(B0);
- if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
- goto err1;
- XY = (uint32_t *)(XY0);
-#ifndef MAP_ANON
- if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0)
- goto err2;
- V = (uint32_t *)(V0);
-#endif
-#else
- if ((B0 = malloc(128 * r * p + 63)) == NULL)
- goto err0;
- B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
- if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
- goto err1;
- XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
-#ifndef MAP_ANON
- if ((V0 = malloc(128 * r * N + 63)) == NULL)
- goto err2;
- V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
-#endif
-#endif
-#ifdef MAP_ANON
- if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
-#ifdef MAP_NOCORE
- MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
-#else
- MAP_ANON | MAP_PRIVATE,
-#endif
- -1, 0)) == MAP_FAILED)
- goto err2;
- V = (uint32_t *)(V0);
-#endif
-
- /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
- PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
-
- /* 2: for i = 0 to p - 1 do */
- for (i = 0; i < p; i++) {
- /* 3: B_i <-- MF(B_i, N) */
- smix(&B[i * 128 * r], r, N, V, XY);
- }
-
- /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
- PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
-
- /* Free memory. */
-#ifdef MAP_ANON
- if (munmap(V0, 128 * r * N))
- goto err2;
-#else
- free(V0);
-#endif
- free(XY0);
- free(B0);
-
- /* Success! */
- return (0);
-
-err2:
- free(XY0);
-err1:
- free(B0);
-err0:
- /* Failure! */
- return (-1);
-}
diff --git a/lib/crypto/crypto_scrypt-ref.c b/lib/crypto/crypto_scrypt-ref.c
deleted file mode 100644
index 1b0d514..0000000
--- a/lib/crypto/crypto_scrypt-ref.c
+++ /dev/null
@@ -1,283 +0,0 @@
-/*-
- * Copyright 2009 Colin Percival
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * This file was originally written by Colin Percival as part of the Tarsnap
- * online backup system.
- */
-
-#include <errno.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <string.h>
-
-#include "sha256.h"
-#include "sysendian.h"
-
-#include "crypto_scrypt.h"
-
-static void blkcpy(uint8_t *, uint8_t *, size_t);
-static void blkxor(uint8_t *, uint8_t *, size_t);
-static void salsa20_8(uint8_t[64]);
-static void blockmix_salsa8(uint8_t *, uint8_t *, size_t);
-static uint64_t integerify(uint8_t *, size_t);
-static void smix(uint8_t *, size_t, uint64_t, uint8_t *, uint8_t *);
-
-static void
-blkcpy(uint8_t * dest, uint8_t * src, size_t len)
-{
- size_t i;
-
- for (i = 0; i < len; i++)
- dest[i] = src[i];
-}
-
-static void
-blkxor(uint8_t * dest, uint8_t * src, size_t len)
-{
- size_t i;
-
- for (i = 0; i < len; i++)
- dest[i] ^= src[i];
-}
-
-/**
- * salsa20_8(B):
- * Apply the salsa20/8 core to the provided block.
- */
-static void
-salsa20_8(uint8_t B[64])
-{
- uint32_t B32[16];
- uint32_t x[16];
- size_t i;
-
- /* Convert little-endian values in. */
- for (i = 0; i < 16; i++)
- B32[i] = le32dec(&B[i * 4]);
-
- /* Compute x = doubleround^4(B32). */
- for (i = 0; i < 16; i++)
- x[i] = B32[i];
- for (i = 0; i < 8; i += 2) {
-#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
- /* Operate on columns. */
- x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
- x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
-
- x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
- x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
-
- x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
- x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
-
- x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
- x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
-
- /* Operate on rows. */
- x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
- x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
-
- x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
- x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
-
- x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
- x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
-
- x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
- x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
-#undef R
- }
-
- /* Compute B32 = B32 + x. */
- for (i = 0; i < 16; i++)
- B32[i] += x[i];
-
- /* Convert little-endian values out. */
- for (i = 0; i < 16; i++)
- le32enc(&B[4 * i], B32[i]);
-}
-
-/**
- * blockmix_salsa8(B, Y, r):
- * Compute B = BlockMix_{salsa20/8, r}(B). The input B must be 128r bytes in
- * length; the temporary space Y must also be the same size.
- */
-static void
-blockmix_salsa8(uint8_t * B, uint8_t * Y, size_t r)
-{
- uint8_t X[64];
- size_t i;
-
- /* 1: X <-- B_{2r - 1} */
- blkcpy(X, &B[(2 * r - 1) * 64], 64);
-
- /* 2: for i = 0 to 2r - 1 do */
- for (i = 0; i < 2 * r; i++) {
- /* 3: X <-- H(X \xor B_i) */
- blkxor(X, &B[i * 64], 64);
- salsa20_8(X);
-
- /* 4: Y_i <-- X */
- blkcpy(&Y[i * 64], X, 64);
- }
-
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- for (i = 0; i < r; i++)
- blkcpy(&B[i * 64], &Y[(i * 2) * 64], 64);
- for (i = 0; i < r; i++)
- blkcpy(&B[(i + r) * 64], &Y[(i * 2 + 1) * 64], 64);
-}
-
-/**
- * integerify(B, r):
- * Return the result of parsing B_{2r-1} as a little-endian integer.
- */
-static uint64_t
-integerify(uint8_t * B, size_t r)
-{
- uint8_t * X = &B[(2 * r - 1) * 64];
-
- return (le64dec(X));
-}
-
-/**
- * smix(B, r, N, V, XY):
- * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; the
- * temporary storage V must be 128rN bytes in length; the temporary storage
- * XY must be 256r bytes in length. The value N must be a power of 2.
- */
-static void
-smix(uint8_t * B, size_t r, uint64_t N, uint8_t * V, uint8_t * XY)
-{
- uint8_t * X = XY;
- uint8_t * Y = &XY[128 * r];
- uint64_t i;
- uint64_t j;
-
- /* 1: X <-- B */
- blkcpy(X, B, 128 * r);
-
- /* 2: for i = 0 to N - 1 do */
- for (i = 0; i < N; i++) {
- /* 3: V_i <-- X */
- blkcpy(&V[i * (128 * r)], X, 128 * r);
-
- /* 4: X <-- H(X) */
- blockmix_salsa8(X, Y, r);
- }
-
- /* 6: for i = 0 to N - 1 do */
- for (i = 0; i < N; i++) {
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(X, r) & (N - 1);
-
- /* 8: X <-- H(X \xor V_j) */
- blkxor(X, &V[j * (128 * r)], 128 * r);
- blockmix_salsa8(X, Y, r);
- }
-
- /* 10: B' <-- X */
- blkcpy(B, X, 128 * r);
-}
-
-/**
- * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
- * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
- * p, buflen) and write the result into buf. The parameters r, p, and buflen
- * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
- * must be a power of 2.
- *
- * Return 0 on success; or -1 on error.
- */
-int
-crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
- const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
- uint8_t * buf, size_t buflen)
-{
- uint8_t * B;
- uint8_t * V;
- uint8_t * XY;
- uint32_t i;
-
- /* Sanity-check parameters. */
-#if SIZE_MAX > UINT32_MAX
- if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
- errno = EFBIG;
- goto err0;
- }
-#endif
- if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
- errno = EFBIG;
- goto err0;
- }
- if (((N & (N - 1)) != 0) || (N == 0)) {
- errno = EINVAL;
- goto err0;
- }
- if ((r > SIZE_MAX / 128 / p) ||
-#if SIZE_MAX / 256 <= UINT32_MAX
- (r > SIZE_MAX / 256) ||
-#endif
- (N > SIZE_MAX / 128 / r)) {
- errno = ENOMEM;
- goto err0;
- }
-
- /* Allocate memory. */
- if ((B = malloc(128 * r * p)) == NULL)
- goto err0;
- if ((XY = malloc(256 * r)) == NULL)
- goto err1;
- if ((V = malloc(128 * r * N)) == NULL)
- goto err2;
-
- /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
- PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
-
- /* 2: for i = 0 to p - 1 do */
- for (i = 0; i < p; i++) {
- /* 3: B_i <-- MF(B_i, N) */
- smix(&B[i * 128 * r], r, N, V, XY);
- }
-
- /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
- PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
-
- /* Free memory. */
- free(V);
- free(XY);
- free(B);
-
- /* Success! */
- return (0);
-
-err2:
- free(XY);
-err1:
- free(B);
-err0:
- /* Failure! */
- return (-1);
-}
diff --git a/lib/crypto/crypto_scrypt-sse.c b/lib/crypto/crypto_scrypt-sse.c
deleted file mode 100644
index 0e6ff33..0000000
--- a/lib/crypto/crypto_scrypt-sse.c
+++ /dev/null
@@ -1,365 +0,0 @@
-/*-
- * Copyright 2009 Colin Percival
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * This file was originally written by Colin Percival as part of the Tarsnap
- * online backup system.
- */
-
-#include <sys/types.h>
-#include <sys/mman.h>
-
-#include <emmintrin.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <string.h>
-
-#include "sha256.h"
-#include "sysendian.h"
-
-#include "crypto_scrypt.h"
-
-static void blkcpy(void *, void *, size_t);
-static void blkxor(void *, void *, size_t);
-static void salsa20_8(__m128i *);
-static void blockmix_salsa8(__m128i *, __m128i *, __m128i *, size_t);
-static uint64_t integerify(void *, size_t);
-static void smix(uint8_t *, size_t, uint64_t, void *, void *);
-
-static void
-blkcpy(void * dest, void * src, size_t len)
-{
- __m128i * D = dest;
- __m128i * S = src;
- size_t L = len / 16;
- size_t i;
-
- for (i = 0; i < L; i++)
- D[i] = S[i];
-}
-
-static void
-blkxor(void * dest, void * src, size_t len)
-{
- __m128i * D = dest;
- __m128i * S = src;
- size_t L = len / 16;
- size_t i;
-
- for (i = 0; i < L; i++)
- D[i] = _mm_xor_si128(D[i], S[i]);
-}
-
-/**
- * salsa20_8(B):
- * Apply the salsa20/8 core to the provided block.
- */
-static void
-salsa20_8(__m128i B[4])
-{
- __m128i X0, X1, X2, X3;
- __m128i T;
- size_t i;
-
- X0 = B[0];
- X1 = B[1];
- X2 = B[2];
- X3 = B[3];
-
- for (i = 0; i < 8; i += 2) {
- /* Operate on "columns". */
- T = _mm_add_epi32(X0, X3);
- X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7));
- X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25));
- T = _mm_add_epi32(X1, X0);
- X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
- X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
- T = _mm_add_epi32(X2, X1);
- X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13));
- X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19));
- T = _mm_add_epi32(X3, X2);
- X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
- X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
-
- /* Rearrange data. */
- X1 = _mm_shuffle_epi32(X1, 0x93);
- X2 = _mm_shuffle_epi32(X2, 0x4E);
- X3 = _mm_shuffle_epi32(X3, 0x39);
-
- /* Operate on "rows". */
- T = _mm_add_epi32(X0, X1);
- X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7));
- X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25));
- T = _mm_add_epi32(X3, X0);
- X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
- X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
- T = _mm_add_epi32(X2, X3);
- X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13));
- X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19));
- T = _mm_add_epi32(X1, X2);
- X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
- X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
-
- /* Rearrange data. */
- X1 = _mm_shuffle_epi32(X1, 0x39);
- X2 = _mm_shuffle_epi32(X2, 0x4E);
- X3 = _mm_shuffle_epi32(X3, 0x93);
- }
-
- B[0] = _mm_add_epi32(B[0], X0);
- B[1] = _mm_add_epi32(B[1], X1);
- B[2] = _mm_add_epi32(B[2], X2);
- B[3] = _mm_add_epi32(B[3], X3);
-}
-
-/**
- * blockmix_salsa8(Bin, Bout, X, r):
- * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
- * bytes in length; the output Bout must also be the same size. The
- * temporary space X must be 64 bytes.
- */
-static void
-blockmix_salsa8(__m128i * Bin, __m128i * Bout, __m128i * X, size_t r)
-{
- size_t i;
-
- /* 1: X <-- B_{2r - 1} */
- blkcpy(X, &Bin[8 * r - 4], 64);
-
- /* 2: for i = 0 to 2r - 1 do */
- for (i = 0; i < r; i++) {
- /* 3: X <-- H(X \xor B_i) */
- blkxor(X, &Bin[i * 8], 64);
- salsa20_8(X);
-
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- blkcpy(&Bout[i * 4], X, 64);
-
- /* 3: X <-- H(X \xor B_i) */
- blkxor(X, &Bin[i * 8 + 4], 64);
- salsa20_8(X);
-
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- blkcpy(&Bout[(r + i) * 4], X, 64);
- }
-}
-
-/**
- * integerify(B, r):
- * Return the result of parsing B_{2r-1} as a little-endian integer.
- */
-static uint64_t
-integerify(void * B, size_t r)
-{
- uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64);
-
- return (((uint64_t)(X[13]) << 32) + X[0]);
-}
-
-/**
- * smix(B, r, N, V, XY):
- * Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
- * the temporary storage V must be 128rN bytes in length; the temporary
- * storage XY must be 256r + 64 bytes in length. The value N must be a
- * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
- * multiple of 64 bytes.
- */
-static void
-smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
-{
- __m128i * X = XY;
- __m128i * Y = (void *)((uintptr_t)(XY) + 128 * r);
- __m128i * Z = (void *)((uintptr_t)(XY) + 256 * r);
- uint32_t * X32 = (void *)X;
- uint64_t i, j;
- size_t k;
-
- /* 1: X <-- B */
- for (k = 0; k < 2 * r; k++) {
- for (i = 0; i < 16; i++) {
- X32[k * 16 + i] =
- le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
- }
- }
-
- /* 2: for i = 0 to N - 1 do */
- for (i = 0; i < N; i += 2) {
- /* 3: V_i <-- X */
- blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);
-
- /* 4: X <-- H(X) */
- blockmix_salsa8(X, Y, Z, r);
-
- /* 3: V_i <-- X */
- blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
- Y, 128 * r);
-
- /* 4: X <-- H(X) */
- blockmix_salsa8(Y, X, Z, r);
- }
-
- /* 6: for i = 0 to N - 1 do */
- for (i = 0; i < N; i += 2) {
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(X, r) & (N - 1);
-
- /* 8: X <-- H(X \xor V_j) */
- blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
- blockmix_salsa8(X, Y, Z, r);
-
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(Y, r) & (N - 1);
-
- /* 8: X <-- H(X \xor V_j) */
- blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
- blockmix_salsa8(Y, X, Z, r);
- }
-
- /* 10: B' <-- X */
- for (k = 0; k < 2 * r; k++) {
- for (i = 0; i < 16; i++) {
- le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
- X32[k * 16 + i]);
- }
- }
-}
-
-/**
- * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
- * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
- * p, buflen) and write the result into buf. The parameters r, p, and buflen
- * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
- * must be a power of 2 greater than 1.
- *
- * Return 0 on success; or -1 on error.
- */
-int
-crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
- const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
- uint8_t * buf, size_t buflen)
-{
- void * B0, * V0, * XY0;
- uint8_t * B;
- uint32_t * V;
- uint32_t * XY;
- uint32_t i;
-
- /* Sanity-check parameters. */
-#if SIZE_MAX > UINT32_MAX
- if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
- errno = EFBIG;
- goto err0;
- }
-#endif
- if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
- errno = EFBIG;
- goto err0;
- }
- if (((N & (N - 1)) != 0) || (N == 0)) {
- errno = EINVAL;
- goto err0;
- }
- if ((r > SIZE_MAX / 128 / p) ||
-#if SIZE_MAX / 256 <= UINT32_MAX
- (r > (SIZE_MAX - 64) / 256) ||
-#endif
- (N > SIZE_MAX / 128 / r)) {
- errno = ENOMEM;
- goto err0;
- }
-
- /* Allocate memory. */
-#ifdef HAVE_POSIX_MEMALIGN
- if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
- goto err0;
- B = (uint8_t *)(B0);
- if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
- goto err1;
- XY = (uint32_t *)(XY0);
-#ifndef MAP_ANON
- if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0)
- goto err2;
- V = (uint32_t *)(V0);
-#endif
-#else
- if ((B0 = malloc(128 * r * p + 63)) == NULL)
- goto err0;
- B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
- if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
- goto err1;
- XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
-#ifndef MAP_ANON
- if ((V0 = malloc(128 * r * N + 63)) == NULL)
- goto err2;
- V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
-#endif
-#endif
-#ifdef MAP_ANON
- if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
-#ifdef MAP_NOCORE
- MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
-#else
- MAP_ANON | MAP_PRIVATE,
-#endif
- -1, 0)) == MAP_FAILED)
- goto err2;
- V = (uint32_t *)(V0);
-#endif
-
- /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
- PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
-
- /* 2: for i = 0 to p - 1 do */
- for (i = 0; i < p; i++) {
- /* 3: B_i <-- MF(B_i, N) */
- smix(&B[i * 128 * r], r, N, V, XY);
- }
-
- /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
- PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
-
- /* Free memory. */
-#ifdef MAP_ANON
- if (munmap(V0, 128 * r * N))
- goto err2;
-#else
- free(V0);
-#endif
- free(XY0);
- free(B0);
-
- /* Success! */
- return (0);
-
-err2:
- free(XY0);
-err1:
- free(B0);
-err0:
- /* Failure! */
- return (-1);
-}
diff --git a/lib/crypto/crypto_scrypt.h b/lib/crypto/crypto_scrypt.h
deleted file mode 100644
index f72e1f4..0000000
--- a/lib/crypto/crypto_scrypt.h
+++ /dev/null
@@ -1,46 +0,0 @@
-/*-
- * Copyright 2009 Colin Percival
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * This file was originally written by Colin Percival as part of the Tarsnap
- * online backup system.
- */
-#ifndef _CRYPTO_SCRYPT_H_
-#define _CRYPTO_SCRYPT_H_
-
-#include <stdint.h>
-
-/**
- * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
- * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
- * p, buflen) and write the result into buf. The parameters r, p, and buflen
- * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
- * must be a power of 2 greater than 1.
- *
- * Return 0 on success; or -1 on error.
- */
-int crypto_scrypt(const uint8_t *, size_t, const uint8_t *, size_t, uint64_t,
- uint32_t, uint32_t, uint8_t *, size_t);
-
-#endif /* !_CRYPTO_SCRYPT_H_ */
diff --git a/lib/crypto/sha256.c b/lib/crypto/sha256.c
deleted file mode 100644
index d2f915f..0000000
--- a/lib/crypto/sha256.c
+++ /dev/null
@@ -1,411 +0,0 @@
-/*-
- * Copyright 2005,2007,2009 Colin Percival
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
-
-#include <sys/types.h>
-
-#include <stdint.h>
-#include <string.h>
-
-#include "sysendian.h"
-
-#include "sha256.h"
-
-/*
- * Encode a length len/4 vector of (uint32_t) into a length len vector of
- * (unsigned char) in big-endian form. Assumes len is a multiple of 4.
- */
-static void
-be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
-{
- size_t i;
-
- for (i = 0; i < len / 4; i++)
- be32enc(dst + i * 4, src[i]);
-}
-
-/*
- * Decode a big-endian length len vector of (unsigned char) into a length
- * len/4 vector of (uint32_t). Assumes len is a multiple of 4.
- */
-static void
-be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
-{
- size_t i;
-
- for (i = 0; i < len / 4; i++)
- dst[i] = be32dec(src + i * 4);
-}
-
-/* Elementary functions used by SHA256 */
-#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
-#define Maj(x, y, z) ((x & (y | z)) | (y & z))
-#define SHR(x, n) (x >> n)
-#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
-#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
-#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
-#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
-#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
-
-/* SHA256 round function */
-#define RND(a, b, c, d, e, f, g, h, k) \
- t0 = h + S1(e) + Ch(e, f, g) + k; \
- t1 = S0(a) + Maj(a, b, c); \
- d += t0; \
- h = t0 + t1;
-
-/* Adjusted round function for rotating state */
-#define RNDr(S, W, i, k) \
- RND(S[(64 - i) % 8], S[(65 - i) % 8], \
- S[(66 - i) % 8], S[(67 - i) % 8], \
- S[(68 - i) % 8], S[(69 - i) % 8], \
- S[(70 - i) % 8], S[(71 - i) % 8], \
- W[i] + k)
-
-/*
- * SHA256 block compression function. The 256-bit state is transformed via
- * the 512-bit input block to produce a new state.
- */
-static void
-SHA256_Transform(uint32_t * state, const unsigned char block[64])
-{
- uint32_t W[64];
- uint32_t S[8];
- uint32_t t0, t1;
- int i;
-
- /* 1. Prepare message schedule W. */
- be32dec_vect(W, block, 64);
- for (i = 16; i < 64; i++)
- W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
-
- /* 2. Initialize working variables. */
- memcpy(S, state, 32);
-
- /* 3. Mix. */
- RNDr(S, W, 0, 0x428a2f98);
- RNDr(S, W, 1, 0x71374491);
- RNDr(S, W, 2, 0xb5c0fbcf);
- RNDr(S, W, 3, 0xe9b5dba5);
- RNDr(S, W, 4, 0x3956c25b);
- RNDr(S, W, 5, 0x59f111f1);
- RNDr(S, W, 6, 0x923f82a4);
- RNDr(S, W, 7, 0xab1c5ed5);
- RNDr(S, W, 8, 0xd807aa98);
- RNDr(S, W, 9, 0x12835b01);
- RNDr(S, W, 10, 0x243185be);
- RNDr(S, W, 11, 0x550c7dc3);
- RNDr(S, W, 12, 0x72be5d74);
- RNDr(S, W, 13, 0x80deb1fe);
- RNDr(S, W, 14, 0x9bdc06a7);
- RNDr(S, W, 15, 0xc19bf174);
- RNDr(S, W, 16, 0xe49b69c1);
- RNDr(S, W, 17, 0xefbe4786);
- RNDr(S, W, 18, 0x0fc19dc6);
- RNDr(S, W, 19, 0x240ca1cc);
- RNDr(S, W, 20, 0x2de92c6f);
- RNDr(S, W, 21, 0x4a7484aa);
- RNDr(S, W, 22, 0x5cb0a9dc);
- RNDr(S, W, 23, 0x76f988da);
- RNDr(S, W, 24, 0x983e5152);
- RNDr(S, W, 25, 0xa831c66d);
- RNDr(S, W, 26, 0xb00327c8);
- RNDr(S, W, 27, 0xbf597fc7);
- RNDr(S, W, 28, 0xc6e00bf3);
- RNDr(S, W, 29, 0xd5a79147);
- RNDr(S, W, 30, 0x06ca6351);
- RNDr(S, W, 31, 0x14292967);
- RNDr(S, W, 32, 0x27b70a85);
- RNDr(S, W, 33, 0x2e1b2138);
- RNDr(S, W, 34, 0x4d2c6dfc);
- RNDr(S, W, 35, 0x53380d13);
- RNDr(S, W, 36, 0x650a7354);
- RNDr(S, W, 37, 0x766a0abb);
- RNDr(S, W, 38, 0x81c2c92e);
- RNDr(S, W, 39, 0x92722c85);
- RNDr(S, W, 40, 0xa2bfe8a1);
- RNDr(S, W, 41, 0xa81a664b);
- RNDr(S, W, 42, 0xc24b8b70);
- RNDr(S, W, 43, 0xc76c51a3);
- RNDr(S, W, 44, 0xd192e819);
- RNDr(S, W, 45, 0xd6990624);
- RNDr(S, W, 46, 0xf40e3585);
- RNDr(S, W, 47, 0x106aa070);
- RNDr(S, W, 48, 0x19a4c116);
- RNDr(S, W, 49, 0x1e376c08);
- RNDr(S, W, 50, 0x2748774c);
- RNDr(S, W, 51, 0x34b0bcb5);
- RNDr(S, W, 52, 0x391c0cb3);
- RNDr(S, W, 53, 0x4ed8aa4a);
- RNDr(S, W, 54, 0x5b9cca4f);
- RNDr(S, W, 55, 0x682e6ff3);
- RNDr(S, W, 56, 0x748f82ee);
- RNDr(S, W, 57, 0x78a5636f);
- RNDr(S, W, 58, 0x84c87814);
- RNDr(S, W, 59, 0x8cc70208);
- RNDr(S, W, 60, 0x90befffa);
- RNDr(S, W, 61, 0xa4506ceb);
- RNDr(S, W, 62, 0xbef9a3f7);
- RNDr(S, W, 63, 0xc67178f2);
-
- /* 4. Mix local working variables into global state */
- for (i = 0; i < 8; i++)
- state[i] += S[i];
-
- /* Clean the stack. */
- memset(W, 0, 256);
- memset(S, 0, 32);
- t0 = t1 = 0;
-}
-
-static unsigned char PAD[64] = {
- 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
-};
-
-/* Add padding and terminating bit-count. */
-static void
-SHA256_Pad(SHA256_CTX * ctx)
-{
- unsigned char len[8];
- uint32_t r, plen;
-
- /*
- * Convert length to a vector of bytes -- we do this now rather
- * than later because the length will change after we pad.
- */
- be32enc_vect(len, ctx->count, 8);
-
- /* Add 1--64 bytes so that the resulting length is 56 mod 64 */
- r = (ctx->count[1] >> 3) & 0x3f;
- plen = (r < 56) ? (56 - r) : (120 - r);
- SHA256_Update(ctx, PAD, (size_t)plen);
-
- /* Add the terminating bit-count */
- SHA256_Update(ctx, len, 8);
-}
-
-/* SHA-256 initialization. Begins a SHA-256 operation. */
-void
-SHA256_Init(SHA256_CTX * ctx)
-{
-
- /* Zero bits processed so far */
- ctx->count[0] = ctx->count[1] = 0;
-
- /* Magic initialization constants */
- ctx->state[0] = 0x6A09E667;
- ctx->state[1] = 0xBB67AE85;
- ctx->state[2] = 0x3C6EF372;
- ctx->state[3] = 0xA54FF53A;
- ctx->state[4] = 0x510E527F;
- ctx->state[5] = 0x9B05688C;
- ctx->state[6] = 0x1F83D9AB;
- ctx->state[7] = 0x5BE0CD19;
-}
-
-/* Add bytes into the hash */
-void
-SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
-{
- uint32_t bitlen[2];
- uint32_t r;
- const unsigned char *src = in;
-
- /* Number of bytes left in the buffer from previous updates */
- r = (ctx->count[1] >> 3) & 0x3f;
-
- /* Convert the length into a number of bits */
- bitlen[1] = ((uint32_t)len) << 3;
- bitlen[0] = (uint32_t)(len >> 29);
-
- /* Update number of bits */
- if ((ctx->count[1] += bitlen[1]) < bitlen[1])
- ctx->count[0]++;
- ctx->count[0] += bitlen[0];
-
- /* Handle the case where we don't need to perform any transforms */
- if (len < 64 - r) {
- memcpy(&ctx->buf[r], src, len);
- return;
- }
-
- /* Finish the current block */
- memcpy(&ctx->buf[r], src, 64 - r);
- SHA256_Transform(ctx->state, ctx->buf);
- src += 64 - r;
- len -= 64 - r;
-
- /* Perform complete blocks */
- while (len >= 64) {
- SHA256_Transform(ctx->state, src);
- src += 64;
- len -= 64;
- }
-
- /* Copy left over data into buffer */
- memcpy(ctx->buf, src, len);
-}
-
-/*
- * SHA-256 finalization. Pads the input data, exports the hash value,
- * and clears the context state.
- */
-void
-SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
-{
-
- /* Add padding */
- SHA256_Pad(ctx);
-
- /* Write the hash */
- be32enc_vect(digest, ctx->state, 32);
-
- /* Clear the context state */
- memset((void *)ctx, 0, sizeof(*ctx));
-}
-
-/* Initialize an HMAC-SHA256 operation with the given key. */
-void
-HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
-{
- unsigned char pad[64];
- unsigned char khash[32];
- const unsigned char * K = _K;
- size_t i;
-
- /* If Klen > 64, the key is really SHA256(K). */
- if (Klen > 64) {
- SHA256_Init(&ctx->ictx);
- SHA256_Update(&ctx->ictx, K, Klen);
- SHA256_Final(khash, &ctx->ictx);
- K = khash;
- Klen = 32;
- }
-
- /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
- SHA256_Init(&ctx->ictx);
- memset(pad, 0x36, 64);
- for (i = 0; i < Klen; i++)
- pad[i] ^= K[i];
- SHA256_Update(&ctx->ictx, pad, 64);
-
- /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
- SHA256_Init(&ctx->octx);
- memset(pad, 0x5c, 64);
- for (i = 0; i < Klen; i++)
- pad[i] ^= K[i];
- SHA256_Update(&ctx->octx, pad, 64);
-
- /* Clean the stack. */
- memset(khash, 0, 32);
-}
-
-/* Add bytes to the HMAC-SHA256 operation. */
-void
-HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len)
-{
-
- /* Feed data to the inner SHA256 operation. */
- SHA256_Update(&ctx->ictx, in, len);
-}
-
-/* Finish an HMAC-SHA256 operation. */
-void
-HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx)
-{
- unsigned char ihash[32];
-
- /* Finish the inner SHA256 operation. */
- SHA256_Final(ihash, &ctx->ictx);
-
- /* Feed the inner hash to the outer SHA256 operation. */
- SHA256_Update(&ctx->octx, ihash, 32);
-
- /* Finish the outer SHA256 operation. */
- SHA256_Final(digest, &ctx->octx);
-
- /* Clean the stack. */
- memset(ihash, 0, 32);
-}
-
-/**
- * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
- * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
- * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
- */
-void
-PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
- size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
-{
- HMAC_SHA256_CTX PShctx, hctx;
- size_t i;
- uint8_t ivec[4];
- uint8_t U[32];
- uint8_t T[32];
- uint64_t j;
- int k;
- size_t clen;
-
- /* Compute HMAC state after processing P and S. */
- HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
- HMAC_SHA256_Update(&PShctx, salt, saltlen);
-
- /* Iterate through the blocks. */
- for (i = 0; i * 32 < dkLen; i++) {
- /* Generate INT(i + 1). */
- be32enc(ivec, (uint32_t)(i + 1));
-
- /* Compute U_1 = PRF(P, S || INT(i)). */
- memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
- HMAC_SHA256_Update(&hctx, ivec, 4);
- HMAC_SHA256_Final(U, &hctx);
-
- /* T_i = U_1 ... */
- memcpy(T, U, 32);
-
- for (j = 2; j <= c; j++) {
- /* Compute U_j. */
- HMAC_SHA256_Init(&hctx, passwd, passwdlen);
- HMAC_SHA256_Update(&hctx, U, 32);
- HMAC_SHA256_Final(U, &hctx);
-
- /* ... xor U_j ... */
- for (k = 0; k < 32; k++)
- T[k] ^= U[k];
- }
-
- /* Copy as many bytes as necessary into buf. */
- clen = dkLen - i * 32;
- if (clen > 32)
- clen = 32;
- memcpy(&buf[i * 32], T, clen);
- }
-
- /* Clean PShctx, since we never called _Final on it. */
- memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX));
-}
diff --git a/lib/crypto/sha256.h b/lib/crypto/sha256.h
deleted file mode 100644
index 289a523..0000000
--- a/lib/crypto/sha256.h
+++ /dev/null
@@ -1,62 +0,0 @@
-/*-
- * Copyright 2005,2007,2009 Colin Percival
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * $FreeBSD: src/lib/libmd/sha256.h,v 1.2 2006/01/17 15:35:56 phk Exp $
- */
-
-#ifndef _SHA256_H_
-#define _SHA256_H_
-
-#include <sys/types.h>
-
-#include <stdint.h>
-
-typedef struct SHA256Context {
- uint32_t state[8];
- uint32_t count[2];
- unsigned char buf[64];
-} SHA256_CTX;
-
-typedef struct HMAC_SHA256Context {
- SHA256_CTX ictx;
- SHA256_CTX octx;
-} HMAC_SHA256_CTX;
-
-void SHA256_Init(SHA256_CTX *);
-void SHA256_Update(SHA256_CTX *, const void *, size_t);
-void SHA256_Final(unsigned char [32], SHA256_CTX *);
-void HMAC_SHA256_Init(HMAC_SHA256_CTX *, const void *, size_t);
-void HMAC_SHA256_Update(HMAC_SHA256_CTX *, const void *, size_t);
-void HMAC_SHA256_Final(unsigned char [32], HMAC_SHA256_CTX *);
-
-/**
- * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
- * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
- * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
- */
-void PBKDF2_SHA256(const uint8_t *, size_t, const uint8_t *, size_t,
- uint64_t, uint8_t *, size_t);
-
-#endif /* !_SHA256_H_ */