summaryrefslogtreecommitdiff
path: root/lib/crypto/sha256.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/crypto/sha256.c')
-rw-r--r--lib/crypto/sha256.c411
1 files changed, 0 insertions, 411 deletions
diff --git a/lib/crypto/sha256.c b/lib/crypto/sha256.c
deleted file mode 100644
index d2f915f..0000000
--- a/lib/crypto/sha256.c
+++ /dev/null
@@ -1,411 +0,0 @@
-/*-
- * Copyright 2005,2007,2009 Colin Percival
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
-
-#include <sys/types.h>
-
-#include <stdint.h>
-#include <string.h>
-
-#include "sysendian.h"
-
-#include "sha256.h"
-
-/*
- * Encode a length len/4 vector of (uint32_t) into a length len vector of
- * (unsigned char) in big-endian form. Assumes len is a multiple of 4.
- */
-static void
-be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
-{
- size_t i;
-
- for (i = 0; i < len / 4; i++)
- be32enc(dst + i * 4, src[i]);
-}
-
-/*
- * Decode a big-endian length len vector of (unsigned char) into a length
- * len/4 vector of (uint32_t). Assumes len is a multiple of 4.
- */
-static void
-be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
-{
- size_t i;
-
- for (i = 0; i < len / 4; i++)
- dst[i] = be32dec(src + i * 4);
-}
-
-/* Elementary functions used by SHA256 */
-#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
-#define Maj(x, y, z) ((x & (y | z)) | (y & z))
-#define SHR(x, n) (x >> n)
-#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
-#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
-#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
-#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
-#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
-
-/* SHA256 round function */
-#define RND(a, b, c, d, e, f, g, h, k) \
- t0 = h + S1(e) + Ch(e, f, g) + k; \
- t1 = S0(a) + Maj(a, b, c); \
- d += t0; \
- h = t0 + t1;
-
-/* Adjusted round function for rotating state */
-#define RNDr(S, W, i, k) \
- RND(S[(64 - i) % 8], S[(65 - i) % 8], \
- S[(66 - i) % 8], S[(67 - i) % 8], \
- S[(68 - i) % 8], S[(69 - i) % 8], \
- S[(70 - i) % 8], S[(71 - i) % 8], \
- W[i] + k)
-
-/*
- * SHA256 block compression function. The 256-bit state is transformed via
- * the 512-bit input block to produce a new state.
- */
-static void
-SHA256_Transform(uint32_t * state, const unsigned char block[64])
-{
- uint32_t W[64];
- uint32_t S[8];
- uint32_t t0, t1;
- int i;
-
- /* 1. Prepare message schedule W. */
- be32dec_vect(W, block, 64);
- for (i = 16; i < 64; i++)
- W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
-
- /* 2. Initialize working variables. */
- memcpy(S, state, 32);
-
- /* 3. Mix. */
- RNDr(S, W, 0, 0x428a2f98);
- RNDr(S, W, 1, 0x71374491);
- RNDr(S, W, 2, 0xb5c0fbcf);
- RNDr(S, W, 3, 0xe9b5dba5);
- RNDr(S, W, 4, 0x3956c25b);
- RNDr(S, W, 5, 0x59f111f1);
- RNDr(S, W, 6, 0x923f82a4);
- RNDr(S, W, 7, 0xab1c5ed5);
- RNDr(S, W, 8, 0xd807aa98);
- RNDr(S, W, 9, 0x12835b01);
- RNDr(S, W, 10, 0x243185be);
- RNDr(S, W, 11, 0x550c7dc3);
- RNDr(S, W, 12, 0x72be5d74);
- RNDr(S, W, 13, 0x80deb1fe);
- RNDr(S, W, 14, 0x9bdc06a7);
- RNDr(S, W, 15, 0xc19bf174);
- RNDr(S, W, 16, 0xe49b69c1);
- RNDr(S, W, 17, 0xefbe4786);
- RNDr(S, W, 18, 0x0fc19dc6);
- RNDr(S, W, 19, 0x240ca1cc);
- RNDr(S, W, 20, 0x2de92c6f);
- RNDr(S, W, 21, 0x4a7484aa);
- RNDr(S, W, 22, 0x5cb0a9dc);
- RNDr(S, W, 23, 0x76f988da);
- RNDr(S, W, 24, 0x983e5152);
- RNDr(S, W, 25, 0xa831c66d);
- RNDr(S, W, 26, 0xb00327c8);
- RNDr(S, W, 27, 0xbf597fc7);
- RNDr(S, W, 28, 0xc6e00bf3);
- RNDr(S, W, 29, 0xd5a79147);
- RNDr(S, W, 30, 0x06ca6351);
- RNDr(S, W, 31, 0x14292967);
- RNDr(S, W, 32, 0x27b70a85);
- RNDr(S, W, 33, 0x2e1b2138);
- RNDr(S, W, 34, 0x4d2c6dfc);
- RNDr(S, W, 35, 0x53380d13);
- RNDr(S, W, 36, 0x650a7354);
- RNDr(S, W, 37, 0x766a0abb);
- RNDr(S, W, 38, 0x81c2c92e);
- RNDr(S, W, 39, 0x92722c85);
- RNDr(S, W, 40, 0xa2bfe8a1);
- RNDr(S, W, 41, 0xa81a664b);
- RNDr(S, W, 42, 0xc24b8b70);
- RNDr(S, W, 43, 0xc76c51a3);
- RNDr(S, W, 44, 0xd192e819);
- RNDr(S, W, 45, 0xd6990624);
- RNDr(S, W, 46, 0xf40e3585);
- RNDr(S, W, 47, 0x106aa070);
- RNDr(S, W, 48, 0x19a4c116);
- RNDr(S, W, 49, 0x1e376c08);
- RNDr(S, W, 50, 0x2748774c);
- RNDr(S, W, 51, 0x34b0bcb5);
- RNDr(S, W, 52, 0x391c0cb3);
- RNDr(S, W, 53, 0x4ed8aa4a);
- RNDr(S, W, 54, 0x5b9cca4f);
- RNDr(S, W, 55, 0x682e6ff3);
- RNDr(S, W, 56, 0x748f82ee);
- RNDr(S, W, 57, 0x78a5636f);
- RNDr(S, W, 58, 0x84c87814);
- RNDr(S, W, 59, 0x8cc70208);
- RNDr(S, W, 60, 0x90befffa);
- RNDr(S, W, 61, 0xa4506ceb);
- RNDr(S, W, 62, 0xbef9a3f7);
- RNDr(S, W, 63, 0xc67178f2);
-
- /* 4. Mix local working variables into global state */
- for (i = 0; i < 8; i++)
- state[i] += S[i];
-
- /* Clean the stack. */
- memset(W, 0, 256);
- memset(S, 0, 32);
- t0 = t1 = 0;
-}
-
-static unsigned char PAD[64] = {
- 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
-};
-
-/* Add padding and terminating bit-count. */
-static void
-SHA256_Pad(SHA256_CTX * ctx)
-{
- unsigned char len[8];
- uint32_t r, plen;
-
- /*
- * Convert length to a vector of bytes -- we do this now rather
- * than later because the length will change after we pad.
- */
- be32enc_vect(len, ctx->count, 8);
-
- /* Add 1--64 bytes so that the resulting length is 56 mod 64 */
- r = (ctx->count[1] >> 3) & 0x3f;
- plen = (r < 56) ? (56 - r) : (120 - r);
- SHA256_Update(ctx, PAD, (size_t)plen);
-
- /* Add the terminating bit-count */
- SHA256_Update(ctx, len, 8);
-}
-
-/* SHA-256 initialization. Begins a SHA-256 operation. */
-void
-SHA256_Init(SHA256_CTX * ctx)
-{
-
- /* Zero bits processed so far */
- ctx->count[0] = ctx->count[1] = 0;
-
- /* Magic initialization constants */
- ctx->state[0] = 0x6A09E667;
- ctx->state[1] = 0xBB67AE85;
- ctx->state[2] = 0x3C6EF372;
- ctx->state[3] = 0xA54FF53A;
- ctx->state[4] = 0x510E527F;
- ctx->state[5] = 0x9B05688C;
- ctx->state[6] = 0x1F83D9AB;
- ctx->state[7] = 0x5BE0CD19;
-}
-
-/* Add bytes into the hash */
-void
-SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
-{
- uint32_t bitlen[2];
- uint32_t r;
- const unsigned char *src = in;
-
- /* Number of bytes left in the buffer from previous updates */
- r = (ctx->count[1] >> 3) & 0x3f;
-
- /* Convert the length into a number of bits */
- bitlen[1] = ((uint32_t)len) << 3;
- bitlen[0] = (uint32_t)(len >> 29);
-
- /* Update number of bits */
- if ((ctx->count[1] += bitlen[1]) < bitlen[1])
- ctx->count[0]++;
- ctx->count[0] += bitlen[0];
-
- /* Handle the case where we don't need to perform any transforms */
- if (len < 64 - r) {
- memcpy(&ctx->buf[r], src, len);
- return;
- }
-
- /* Finish the current block */
- memcpy(&ctx->buf[r], src, 64 - r);
- SHA256_Transform(ctx->state, ctx->buf);
- src += 64 - r;
- len -= 64 - r;
-
- /* Perform complete blocks */
- while (len >= 64) {
- SHA256_Transform(ctx->state, src);
- src += 64;
- len -= 64;
- }
-
- /* Copy left over data into buffer */
- memcpy(ctx->buf, src, len);
-}
-
-/*
- * SHA-256 finalization. Pads the input data, exports the hash value,
- * and clears the context state.
- */
-void
-SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
-{
-
- /* Add padding */
- SHA256_Pad(ctx);
-
- /* Write the hash */
- be32enc_vect(digest, ctx->state, 32);
-
- /* Clear the context state */
- memset((void *)ctx, 0, sizeof(*ctx));
-}
-
-/* Initialize an HMAC-SHA256 operation with the given key. */
-void
-HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
-{
- unsigned char pad[64];
- unsigned char khash[32];
- const unsigned char * K = _K;
- size_t i;
-
- /* If Klen > 64, the key is really SHA256(K). */
- if (Klen > 64) {
- SHA256_Init(&ctx->ictx);
- SHA256_Update(&ctx->ictx, K, Klen);
- SHA256_Final(khash, &ctx->ictx);
- K = khash;
- Klen = 32;
- }
-
- /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
- SHA256_Init(&ctx->ictx);
- memset(pad, 0x36, 64);
- for (i = 0; i < Klen; i++)
- pad[i] ^= K[i];
- SHA256_Update(&ctx->ictx, pad, 64);
-
- /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
- SHA256_Init(&ctx->octx);
- memset(pad, 0x5c, 64);
- for (i = 0; i < Klen; i++)
- pad[i] ^= K[i];
- SHA256_Update(&ctx->octx, pad, 64);
-
- /* Clean the stack. */
- memset(khash, 0, 32);
-}
-
-/* Add bytes to the HMAC-SHA256 operation. */
-void
-HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len)
-{
-
- /* Feed data to the inner SHA256 operation. */
- SHA256_Update(&ctx->ictx, in, len);
-}
-
-/* Finish an HMAC-SHA256 operation. */
-void
-HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx)
-{
- unsigned char ihash[32];
-
- /* Finish the inner SHA256 operation. */
- SHA256_Final(ihash, &ctx->ictx);
-
- /* Feed the inner hash to the outer SHA256 operation. */
- SHA256_Update(&ctx->octx, ihash, 32);
-
- /* Finish the outer SHA256 operation. */
- SHA256_Final(digest, &ctx->octx);
-
- /* Clean the stack. */
- memset(ihash, 0, 32);
-}
-
-/**
- * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
- * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
- * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
- */
-void
-PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
- size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
-{
- HMAC_SHA256_CTX PShctx, hctx;
- size_t i;
- uint8_t ivec[4];
- uint8_t U[32];
- uint8_t T[32];
- uint64_t j;
- int k;
- size_t clen;
-
- /* Compute HMAC state after processing P and S. */
- HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
- HMAC_SHA256_Update(&PShctx, salt, saltlen);
-
- /* Iterate through the blocks. */
- for (i = 0; i * 32 < dkLen; i++) {
- /* Generate INT(i + 1). */
- be32enc(ivec, (uint32_t)(i + 1));
-
- /* Compute U_1 = PRF(P, S || INT(i)). */
- memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
- HMAC_SHA256_Update(&hctx, ivec, 4);
- HMAC_SHA256_Final(U, &hctx);
-
- /* T_i = U_1 ... */
- memcpy(T, U, 32);
-
- for (j = 2; j <= c; j++) {
- /* Compute U_j. */
- HMAC_SHA256_Init(&hctx, passwd, passwdlen);
- HMAC_SHA256_Update(&hctx, U, 32);
- HMAC_SHA256_Final(U, &hctx);
-
- /* ... xor U_j ... */
- for (k = 0; k < 32; k++)
- T[k] ^= U[k];
- }
-
- /* Copy as many bytes as necessary into buf. */
- clen = dkLen - i * 32;
- if (clen > 32)
- clen = 32;
- memcpy(&buf[i * 32], T, clen);
- }
-
- /* Clean PShctx, since we never called _Final on it. */
- memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX));
-}