summaryrefslogtreecommitdiff
path: root/tests/sqr.dat
blob: ca57cd5859c4aee0c3e73d51b8777acae774fbb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Data file for mpc_sqr.
#
# Copyright (C) 2008, 2010 Philippe Th\'eveny, Andreas Enge
#
# This file is part of the MPC Library.
#
# The MPC Library is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation; either version 2.1 of the License, or (at your
# option) any later version.
#
# The MPC Library is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
# License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with the MPC Library; see the file COPYING.LIB.  If not, write to
# the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
# MA 02111-1307, USA.
#
# The line format respects the parameter order in function prototype as
# follow:
#
# PREC_ROP_RE  ROP_RE  PREC_ROP_IM  ROP_IM  PREC_OP_RE  OP_RE  PREC_OP_IM  OP_IM  RND_RE  RND_IM
#
# see sin.dat for precisions

# special values (following ISO C99 standard)
0 0 53  nan 53 +inf     53 -inf 53 -inf N N
0 0 53 +inf 53 +inf     53 -inf 53   -1 N N
0 0 53 +inf 53  nan     53 -inf 53   -0 N N
0 0 53 +inf 53  nan     53 -inf 53   +0 N N
0 0 53 +inf 53 -inf     53 -inf 53   +1 N N
0 0 53  nan 53 -inf     53 -inf 53 +inf N N
0 0 53  nan 53  nan     53 -inf 53  nan N N
0 0 53 -inf 53 +inf     53   -1 53 -inf N N
0 0 53   +1 53   +0     53   -1 53   -0 N N
0 0 53   +1 53   -0     53   -1 53   +0 N N
0 0 53 -inf 53 -inf     53   -1 53 +inf N N
0 0 53  nan 53  nan     53   -1 53  nan N N
0 0 53 -inf 53  nan     53   -0 53 -inf N N
0 0 53   -1 53   +0     53   -0 53   -1 N N
0 0 53    0 53   +0     53   -0 53   -0 N N
0 0 53    0 53   -0     53   -0 53   +0 N N
0 0 53   -1 53   -0     53   -0 53   +1 N N
0 0 53 -inf 53  nan     53   -0 53 +inf N N
0 0 53  nan 53  nan     53   -0 53  nan N N
0 0 53 -inf 53  nan     53   +0 53 -inf N N
0 0 53   -1 53   -0     53   +0 53   -1 N N
0 0 53    0 53   -0     53   +0 53   -0 N N
0 0 53    0 53   +0     53   +0 53   +0 N N
0 0 53   -1 53   +0     53   +0 53   +1 N N
0 0 53 -inf 53  nan     53   +0 53 +inf N N
0 0 53  nan 53  nan     53   +0 53  nan N N
0 0 53 -inf 53 -inf     53   +1 53 -inf N N
0 0 53   +1 53   -0     53   +1 53   -0 N N
0 0 53   +1 53   +0     53   +1 53   +0 N N
0 0 53 -inf 53 +inf     53   +1 53 +inf N N
0 0 53  nan 53  nan     53   +1 53  nan N N
0 0 53  nan 53 -inf     53 +inf 53 -inf N N
0 0 53 +inf 53 -inf     53 +inf 53   -1 N N
0 0 53 +inf 53  nan     53 +inf 53   -0 N N
0 0 53 +inf 53  nan     53 +inf 53   +0 N N
0 0 53 +inf 53 +inf     53 +inf 53   +1 N N
0 0 53  nan 53 +inf     53 +inf 53 +inf N N
0 0 53  nan 53  nan     53 +inf 53  nan N N
0 0 53  nan 53  nan     53  nan 53 -inf N N
0 0 53  nan 53  nan     53  nan 53   -1 N N
0 0 53  nan 53  nan     53  nan 53   -0 N N
0 0 53  nan 53  nan     53  nan 53   +0 N N
0 0 53  nan 53  nan     53  nan 53   +1 N N
0 0 53  nan 53  nan     53  nan 53 +inf N N
0 0 53  nan 53  nan     53  nan 53  nan N N

# pure real argument
+ 0 53 0x12345676543230p+52  2 +0    53  0x1111111000000f 17 +0 N N
- 0 53 0x1234567654322fp+52  3 -0    54 -0x1111111000000f 16 +0 Z N
+ 0 53 0x12345676543230p+52  4 -0    55  0x1111111000000f 15 -0 U N
- 0 53 0x1234567654322fp+52  5 +0    56 -0x1111111000000f 14 -0 D N
- 0 53 0x1234567654322fp+52  6 +0    57  0x1111111000000f 13 +0 Z Z
+ 0 53 0x12345676543230p+52  7 -0    58 -0x1111111000000f 12 +0 U Z
- 0 53 0x1234567654322fp+52  8 -0    59  0x1111111000000f 11 -0 D Z
+ 0 53 0x12345676543230p+52  9 +0    60 -0x1111111000000f 10 -0 N Z
+ 0 53 0x12345676543230p+52 10 +0    61  0x1111111000000f  9 +0 U U
- 0 53 0x1234567654322fp+52 11 -0    62 -0x1111111000000f  8 +0 D U
+ 0 53 0x12345676543230p+52 12 -0    63  0x1111111000000f  7 -0 N U
- 0 53 0x1234567654322fp+52 13 +0    64 -0x1111111000000f  6 -0 Z U
- 0 53 0x1234567654322fp+52 14 +0    65  0x1111111000000f  5 +0 D D
+ 0 53 0x12345676543230p+52 15 -0    66 -0x1111111000000f  4 +0 N D
- 0 53 0x1234567654322fp+52 16 -0    67  0x1111111000000f  3 -0 Z D
+ 0 53 0x12345676543230p+52 17 +0    68 -0x1111111000000f  2 -0 U D

# pure imaginary argument
- 0 53 -0xE1000002000000p+56 53 +0    53 +0 53  0xf0000001111111 N N
+ 0 53 -0xe1000001fffff8p+56 52 -0    51 -0 54  0xf0000001111111 Z N
+ 0 53 -0xe1000001fffff8p+56 51 -0    49 +0 55 -0xf0000001111111 U N
- 0 53 -0xe1000002000000p+56 50 +0    47 -0 56 -0xf0000001111111 D N
+ 0 53 -0xe1000001fffff8p+56 49 +0    45 +0 57  0xf0000001111111 Z Z
+ 0 53 -0xe1000001fffff8p+56 48 -0    43 -0 58  0xf0000001111111 U Z
- 0 53 -0xe1000002000000p+56 47 -0    41 +0 59 -0xf0000001111111 D Z
- 0 53 -0xe1000002000000p+56 46 +0    39 -0 60 -0xf0000001111111 N Z
+ 0 53 -0xe1000001fffff8p+56 45 +0    37 +0 61  0xf0000001111111 U U
- 0 53 -0xe1000002000000p+56 44 -0    35 -0 62  0xf0000001111111 D U
- 0 53 -0xe1000002000000p+56 43 -0    33 +0 63 -0xf0000001111111 N U
+ 0 53 -0xe1000001fffff8p+56 42 +0    31 -0 64 -0xf0000001111111 Z U
- 0 53 -0xe1000002000000p+56 41 +0    29 +0 65  0xf0000001111111 D D
- 0 53 -0xe1000002000000p+56 40 -0    27 -0 66  0xf0000001111111 N D
+ 0 53 -0xe1000001fffff8p+56 39 -0    25 +0 67 -0xf0000001111111 Z D
+ 0 53 -0xe1000001fffff8p+56 38 +0    23 -0 68 -0xf0000001111111 U D

# IEEE-754 double precision
- + 53  0x10000000020000p+04   53  0x10000000effff         53  0x400008000180fp-22   53  0x7ffff0077efcbp-32   N N
- - 53  0x3ffffffffffffd       53  0x7ffffffffffff4p+52    53  0x1fffffffffffff      53  0x1ffffffffffffe      Z N
+ + 53  0x1c16e5d4c4d5e7p-45   53 -0x7ffffff800007p-47     53  0xf                   53 -0x1111111000000fp-53  U N
- + 53  0xfdbac097c8dc50p+2096 53  0x7f6e5d4c3b2a2p+1036   53  0xfedcba9876543p+1024 53  0x10000000000001p-42  D N
+ - 53 -0x10000000020000p+04   53  0x10000000efffefp-04    53  0x7ffff0077efcbp-32   53  0x400008000180fp-22   Z Z
+ + 53  0x3ffffffffffffe       53 -0x7ffffffffffff4p+52    53  0x1fffffffffffff      53 -0x1ffffffffffffe      U Z
- - 53  0xe0b72ea626af3p-44    53  0x7ffffff800007p-47     53  0xf                   53  0x1111111000000fp-53  D Z
- - 53 -0xfdbac097c8dc58p+2096 53  0x7f6e5d4c3b2a1cp+1032  53 -0x10000000000001p-42  53 -0xfedcba9876543p+1024 N Z
+ + 53  0x10000000020001p+04   53 -0x10000000efffefp-04    53  0x400008000180fp-22   53 -0x7ffff0077efcbp-32   U U
- + 53 -0x3ffffffffffffe       53 -0x7ffffffffffff4p+52    53 -0x1ffffffffffffe      53  0x1fffffffffffff      D U
- + 53 -0x1C16E5D4C4D5E7p-45   53  0x1ffffffe00001dp-49    53 -0x1111111000000fp-53  53 -0xf                   N U
+ + 53 -0xfdbac097c8dc50p+2096 53 -0x7f6e5d4c3b2a1cp+1032  53  0x10000000000001p-42  53 -0xfedcba9876543p+1024 Z U
- - 53 -0x10000000020001p+04   53 -0x10000000effff         53 -0x7ffff0077efcbp-32   53  0x400008000180fp-22   D D
- - 53  0x3ffffffffffffd       53 -0x7ffffffffffff8p+52    53 -0x1fffffffffffff      53  0x1ffffffffffffe      N D
+ - 53 -0xE0B72EA626AF3p-44    53 -0x1FFFFFFE00001Dp-49    53  0x1111111000000fp-53  53 -0xf                   Z D
+ - 53  0xfdbac097c8dc58p+2096 53 -0x7f6e5d4c3b2a2p+1036   53 -0xfedcba9876543p+1024 53  0x10000000000001p-42  U D

# improve test coverage:
# For op=x+i*y, we need a case where x+y and x-y are inexact at the
# higher computing precision, and where x and y do not have too
# distinct exponents so that Karatsuba gets triggered...
# (2^44 + i*(2^29 + 1))^2 \approx (2^88-2^58) + i*2^45*(2^29+1)
+ 0 30 309485009533114692573069312 30 18889465966662952943616  30 17592186044416 30 536870913 N N
# ...and a case where x+y or x-y are 0.
0 0 4 0 4 2  4 1 4 1 N N

# a few values, previously hard-coded in tsqr.c
0 0 8 7 8 24  8 4 8 3 N N
+ + 8 0b1.1000111e-3 8 0b1.1100111e-3  27 0b1.11111011011000010101000000e-2 27 0b1.11010001010110111001110001e-3 N N

# bug 20090930, infinite loop
+ + 3464 inf 3464 inf  866 -0x2.5763c6519ef1510f8afa101a210b8030b1909cc17004db561a25d9b53e2c08c41c01e8bbac5af6299b9d8786030aa14943d841798c8c369287942e4d4cec42a60ab0922af931159805e631128e97f973754ad53972d5d320a651a3b4a667f0ef2b92dbd698d159c3642675140@192158913 866 -0xd.15f2d530934dd930d66e89d70762d2337a8f973dd6915eb6b532fd372fcc955df1d852632d4e46fe64154ceda991a1302caf1b0ec622497e3e5724dd05b1c89a06e28d7e18e8af58f5ff4c9998cb31714688867524f41e0b31e847c1bf40de5127f858069998efd7c3e599080@192158893 N N

# bug 20091001, infinite loop
? + 2256 0 2256 -0  564 0xc.87999bfd1cb1a64288881e214b7cf1af979863b23c030b79c4a8bebb39177967608388a2e4df527977e7755a25df8af8f72fdd6dd2f42bd00de83088b4e9b59ce85caf2e6b0c0@-184298749 564 -0x2.5109af459d4daf357e09475ec991cdc9b02c8f7dfacdc060d2a24710d09c997f8aea6dbd46f10828c30b583fdcc90d7dcbb895689d594d3813db40784d2309e450d1fb6e38da8@-184298726 N N