diff options
author | Pierre de Buyl <pdebuyl@pdebuyl.be> | 2020-02-06 21:34:56 +0100 |
---|---|---|
committer | Pierre de Buyl <pdebuyl@pdebuyl.be> | 2020-02-06 21:34:56 +0100 |
commit | a2a69d9c7eb55cc364a02021219920c51dd72c80 (patch) | |
tree | b75ecd5727453c635fe6674b5e2674a7ea481adb /doc/source/reference/arrays.classes.rst | |
parent | 8e3062d1e24019e294fd6501ffdd64da082a8c62 (diff) | |
download | numpy-a2a69d9c7eb55cc364a02021219920c51dd72c80.tar.gz |
update doctests, small bugs and changes of repr
Fix missing np prefix.
Fix missing definitions.
Use print function instead of the statement.
Add seed to make output repeatable.
Diffstat (limited to 'doc/source/reference/arrays.classes.rst')
-rw-r--r-- | doc/source/reference/arrays.classes.rst | 48 |
1 files changed, 27 insertions, 21 deletions
diff --git a/doc/source/reference/arrays.classes.rst b/doc/source/reference/arrays.classes.rst index 9dcbb6267..6b6f366df 100644 --- a/doc/source/reference/arrays.classes.rst +++ b/doc/source/reference/arrays.classes.rst @@ -6,6 +6,10 @@ Standard array subclasses .. currentmodule:: numpy +.. for doctests + >>> import numpy as np + >>> np.random.seed(1) + .. note:: Subclassing a ``numpy.ndarray`` is possible but if your goal is to create @@ -404,23 +408,25 @@ alias for "matrix "in NumPy. Example 1: Matrix creation from a string ->>> a=mat('1 2 3; 4 5 3') ->>> print (a*a.T).I -[[ 0.2924 -0.1345] - [-0.1345 0.0819]] +>>> a = np.mat('1 2 3; 4 5 3') +>>> print((a*a.T).I) + [[ 0.29239766 -0.13450292] + [-0.13450292 0.08187135]] + Example 2: Matrix creation from nested sequence ->>> mat([[1,5,10],[1.0,3,4j]]) +>>> np.mat([[1,5,10],[1.0,3,4j]]) matrix([[ 1.+0.j, 5.+0.j, 10.+0.j], [ 1.+0.j, 3.+0.j, 0.+4.j]]) Example 3: Matrix creation from an array ->>> mat(random.rand(3,3)).T -matrix([[ 0.7699, 0.7922, 0.3294], - [ 0.2792, 0.0101, 0.9219], - [ 0.3398, 0.7571, 0.8197]]) +>>> np.mat(np.random.rand(3,3)).T +matrix([[4.17022005e-01, 3.02332573e-01, 1.86260211e-01], + [7.20324493e-01, 1.46755891e-01, 3.45560727e-01], + [1.14374817e-04, 9.23385948e-02, 3.96767474e-01]]) + Memory-mapped file arrays ========================= @@ -451,15 +457,15 @@ array actually get written to disk. Example: ->>> a = memmap('newfile.dat', dtype=float, mode='w+', shape=1000) +>>> a = np.memmap('newfile.dat', dtype=float, mode='w+', shape=1000) >>> a[10] = 10.0 >>> a[30] = 30.0 >>> del a ->>> b = fromfile('newfile.dat', dtype=float) ->>> print b[10], b[30] +>>> b = np.fromfile('newfile.dat', dtype=float) +>>> print(b[10], b[30]) 10.0 30.0 ->>> a = memmap('newfile.dat', dtype=float) ->>> print a[10], a[30] +>>> a = np.memmap('newfile.dat', dtype=float) +>>> print(a[10], a[30]) 10.0 30.0 @@ -590,9 +596,9 @@ This default iterator selects a sub-array of dimension :math:`N-1` from the array. This can be a useful construct for defining recursive algorithms. To loop over the entire array requires :math:`N` for-loops. ->>> a = arange(24).reshape(3,2,4)+10 +>>> a = np.arange(24).reshape(3,2,4)+10 >>> for val in a: -... print 'item:', val +... print('item:', val) item: [[10 11 12 13] [14 15 16 17]] item: [[18 19 20 21] @@ -614,7 +620,7 @@ an iterator that will cycle over the entire array in C-style contiguous order. >>> for i, val in enumerate(a.flat): -... if i%5 == 0: print i, val +... if i%5 == 0: print(i, val) 0 10 5 15 10 20 @@ -636,8 +642,8 @@ N-dimensional enumeration Sometimes it may be useful to get the N-dimensional index while iterating. The ndenumerate iterator can achieve this. ->>> for i, val in ndenumerate(a): -... if sum(i)%5 == 0: print i, val +>>> for i, val in np.ndenumerate(a): +... if sum(i)%5 == 0: print(i, val) (0, 0, 0) 10 (1, 1, 3) 25 (2, 0, 3) 29 @@ -658,8 +664,8 @@ objects as inputs and returns an iterator that returns tuples providing each of the input sequence elements in the broadcasted result. ->>> for val in broadcast([[1,0],[2,3]],[0,1]): -... print val +>>> for val in np.broadcast([[1,0],[2,3]],[0,1]): +... print(val) (1, 0) (0, 1) (2, 0) |