summaryrefslogtreecommitdiff
path: root/doc/source/reference/arrays.classes.rst
diff options
context:
space:
mode:
authorPierre de Buyl <pdebuyl@pdebuyl.be>2020-02-06 21:34:56 +0100
committerPierre de Buyl <pdebuyl@pdebuyl.be>2020-02-06 21:34:56 +0100
commita2a69d9c7eb55cc364a02021219920c51dd72c80 (patch)
treeb75ecd5727453c635fe6674b5e2674a7ea481adb /doc/source/reference/arrays.classes.rst
parent8e3062d1e24019e294fd6501ffdd64da082a8c62 (diff)
downloadnumpy-a2a69d9c7eb55cc364a02021219920c51dd72c80.tar.gz
update doctests, small bugs and changes of repr
Fix missing np prefix. Fix missing definitions. Use print function instead of the statement. Add seed to make output repeatable.
Diffstat (limited to 'doc/source/reference/arrays.classes.rst')
-rw-r--r--doc/source/reference/arrays.classes.rst48
1 files changed, 27 insertions, 21 deletions
diff --git a/doc/source/reference/arrays.classes.rst b/doc/source/reference/arrays.classes.rst
index 9dcbb6267..6b6f366df 100644
--- a/doc/source/reference/arrays.classes.rst
+++ b/doc/source/reference/arrays.classes.rst
@@ -6,6 +6,10 @@ Standard array subclasses
.. currentmodule:: numpy
+.. for doctests
+ >>> import numpy as np
+ >>> np.random.seed(1)
+
.. note::
Subclassing a ``numpy.ndarray`` is possible but if your goal is to create
@@ -404,23 +408,25 @@ alias for "matrix "in NumPy.
Example 1: Matrix creation from a string
->>> a=mat('1 2 3; 4 5 3')
->>> print (a*a.T).I
-[[ 0.2924 -0.1345]
- [-0.1345 0.0819]]
+>>> a = np.mat('1 2 3; 4 5 3')
+>>> print((a*a.T).I)
+ [[ 0.29239766 -0.13450292]
+ [-0.13450292 0.08187135]]
+
Example 2: Matrix creation from nested sequence
->>> mat([[1,5,10],[1.0,3,4j]])
+>>> np.mat([[1,5,10],[1.0,3,4j]])
matrix([[ 1.+0.j, 5.+0.j, 10.+0.j],
[ 1.+0.j, 3.+0.j, 0.+4.j]])
Example 3: Matrix creation from an array
->>> mat(random.rand(3,3)).T
-matrix([[ 0.7699, 0.7922, 0.3294],
- [ 0.2792, 0.0101, 0.9219],
- [ 0.3398, 0.7571, 0.8197]])
+>>> np.mat(np.random.rand(3,3)).T
+matrix([[4.17022005e-01, 3.02332573e-01, 1.86260211e-01],
+ [7.20324493e-01, 1.46755891e-01, 3.45560727e-01],
+ [1.14374817e-04, 9.23385948e-02, 3.96767474e-01]])
+
Memory-mapped file arrays
=========================
@@ -451,15 +457,15 @@ array actually get written to disk.
Example:
->>> a = memmap('newfile.dat', dtype=float, mode='w+', shape=1000)
+>>> a = np.memmap('newfile.dat', dtype=float, mode='w+', shape=1000)
>>> a[10] = 10.0
>>> a[30] = 30.0
>>> del a
->>> b = fromfile('newfile.dat', dtype=float)
->>> print b[10], b[30]
+>>> b = np.fromfile('newfile.dat', dtype=float)
+>>> print(b[10], b[30])
10.0 30.0
->>> a = memmap('newfile.dat', dtype=float)
->>> print a[10], a[30]
+>>> a = np.memmap('newfile.dat', dtype=float)
+>>> print(a[10], a[30])
10.0 30.0
@@ -590,9 +596,9 @@ This default iterator selects a sub-array of dimension :math:`N-1`
from the array. This can be a useful construct for defining recursive
algorithms. To loop over the entire array requires :math:`N` for-loops.
->>> a = arange(24).reshape(3,2,4)+10
+>>> a = np.arange(24).reshape(3,2,4)+10
>>> for val in a:
-... print 'item:', val
+... print('item:', val)
item: [[10 11 12 13]
[14 15 16 17]]
item: [[18 19 20 21]
@@ -614,7 +620,7 @@ an iterator that will cycle over the entire array in C-style
contiguous order.
>>> for i, val in enumerate(a.flat):
-... if i%5 == 0: print i, val
+... if i%5 == 0: print(i, val)
0 10
5 15
10 20
@@ -636,8 +642,8 @@ N-dimensional enumeration
Sometimes it may be useful to get the N-dimensional index while
iterating. The ndenumerate iterator can achieve this.
->>> for i, val in ndenumerate(a):
-... if sum(i)%5 == 0: print i, val
+>>> for i, val in np.ndenumerate(a):
+... if sum(i)%5 == 0: print(i, val)
(0, 0, 0) 10
(1, 1, 3) 25
(2, 0, 3) 29
@@ -658,8 +664,8 @@ objects as inputs and returns an iterator that returns tuples
providing each of the input sequence elements in the broadcasted
result.
->>> for val in broadcast([[1,0],[2,3]],[0,1]):
-... print val
+>>> for val in np.broadcast([[1,0],[2,3]],[0,1]):
+... print(val)
(1, 0)
(0, 1)
(2, 0)