summaryrefslogtreecommitdiff
path: root/doc/source/reference/arrays.classes.rst
diff options
context:
space:
mode:
Diffstat (limited to 'doc/source/reference/arrays.classes.rst')
-rw-r--r--doc/source/reference/arrays.classes.rst48
1 files changed, 27 insertions, 21 deletions
diff --git a/doc/source/reference/arrays.classes.rst b/doc/source/reference/arrays.classes.rst
index 9dcbb6267..6b6f366df 100644
--- a/doc/source/reference/arrays.classes.rst
+++ b/doc/source/reference/arrays.classes.rst
@@ -6,6 +6,10 @@ Standard array subclasses
.. currentmodule:: numpy
+.. for doctests
+ >>> import numpy as np
+ >>> np.random.seed(1)
+
.. note::
Subclassing a ``numpy.ndarray`` is possible but if your goal is to create
@@ -404,23 +408,25 @@ alias for "matrix "in NumPy.
Example 1: Matrix creation from a string
->>> a=mat('1 2 3; 4 5 3')
->>> print (a*a.T).I
-[[ 0.2924 -0.1345]
- [-0.1345 0.0819]]
+>>> a = np.mat('1 2 3; 4 5 3')
+>>> print((a*a.T).I)
+ [[ 0.29239766 -0.13450292]
+ [-0.13450292 0.08187135]]
+
Example 2: Matrix creation from nested sequence
->>> mat([[1,5,10],[1.0,3,4j]])
+>>> np.mat([[1,5,10],[1.0,3,4j]])
matrix([[ 1.+0.j, 5.+0.j, 10.+0.j],
[ 1.+0.j, 3.+0.j, 0.+4.j]])
Example 3: Matrix creation from an array
->>> mat(random.rand(3,3)).T
-matrix([[ 0.7699, 0.7922, 0.3294],
- [ 0.2792, 0.0101, 0.9219],
- [ 0.3398, 0.7571, 0.8197]])
+>>> np.mat(np.random.rand(3,3)).T
+matrix([[4.17022005e-01, 3.02332573e-01, 1.86260211e-01],
+ [7.20324493e-01, 1.46755891e-01, 3.45560727e-01],
+ [1.14374817e-04, 9.23385948e-02, 3.96767474e-01]])
+
Memory-mapped file arrays
=========================
@@ -451,15 +457,15 @@ array actually get written to disk.
Example:
->>> a = memmap('newfile.dat', dtype=float, mode='w+', shape=1000)
+>>> a = np.memmap('newfile.dat', dtype=float, mode='w+', shape=1000)
>>> a[10] = 10.0
>>> a[30] = 30.0
>>> del a
->>> b = fromfile('newfile.dat', dtype=float)
->>> print b[10], b[30]
+>>> b = np.fromfile('newfile.dat', dtype=float)
+>>> print(b[10], b[30])
10.0 30.0
->>> a = memmap('newfile.dat', dtype=float)
->>> print a[10], a[30]
+>>> a = np.memmap('newfile.dat', dtype=float)
+>>> print(a[10], a[30])
10.0 30.0
@@ -590,9 +596,9 @@ This default iterator selects a sub-array of dimension :math:`N-1`
from the array. This can be a useful construct for defining recursive
algorithms. To loop over the entire array requires :math:`N` for-loops.
->>> a = arange(24).reshape(3,2,4)+10
+>>> a = np.arange(24).reshape(3,2,4)+10
>>> for val in a:
-... print 'item:', val
+... print('item:', val)
item: [[10 11 12 13]
[14 15 16 17]]
item: [[18 19 20 21]
@@ -614,7 +620,7 @@ an iterator that will cycle over the entire array in C-style
contiguous order.
>>> for i, val in enumerate(a.flat):
-... if i%5 == 0: print i, val
+... if i%5 == 0: print(i, val)
0 10
5 15
10 20
@@ -636,8 +642,8 @@ N-dimensional enumeration
Sometimes it may be useful to get the N-dimensional index while
iterating. The ndenumerate iterator can achieve this.
->>> for i, val in ndenumerate(a):
-... if sum(i)%5 == 0: print i, val
+>>> for i, val in np.ndenumerate(a):
+... if sum(i)%5 == 0: print(i, val)
(0, 0, 0) 10
(1, 1, 3) 25
(2, 0, 3) 29
@@ -658,8 +664,8 @@ objects as inputs and returns an iterator that returns tuples
providing each of the input sequence elements in the broadcasted
result.
->>> for val in broadcast([[1,0],[2,3]],[0,1]):
-... print val
+>>> for val in np.broadcast([[1,0],[2,3]],[0,1]):
+... print(val)
(1, 0)
(0, 1)
(2, 0)