summaryrefslogtreecommitdiff
path: root/doc/source/reference/c-api.array.rst
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2015-07-01 11:44:49 -0600
committerCharles Harris <charlesr.harris@gmail.com>2015-07-01 23:40:55 -0600
commit6646bdfeac189c50b19b032ea8b6795ea7fd2074 (patch)
tree5ae42a27c3852f62c561e5c2ccb02e40349faedb /doc/source/reference/c-api.array.rst
parent61d2a445881f80b52bc9facdbd4f58f6e74c637b (diff)
downloadnumpy-6646bdfeac189c50b19b032ea8b6795ea7fd2074.tar.gz
DOC: Fix outdated sphinx directives.
Examples :cdata: -> :c:data: .. cfunction:: -> .. c:function::
Diffstat (limited to 'doc/source/reference/c-api.array.rst')
-rw-r--r--doc/source/reference/c-api.array.rst1366
1 files changed, 683 insertions, 683 deletions
diff --git a/doc/source/reference/c-api.array.rst b/doc/source/reference/c-api.array.rst
index f5f753292..1dfd7d8f0 100644
--- a/doc/source/reference/c-api.array.rst
+++ b/doc/source/reference/c-api.array.rst
@@ -20,31 +20,31 @@ Array API
Array structure and data access
-------------------------------
-These macros all access the :ctype:`PyArrayObject` structure members. The input
-argument, arr, can be any :ctype:`PyObject *` that is directly interpretable
-as a :ctype:`PyArrayObject *` (any instance of the :cdata:`PyArray_Type` and its
+These macros all access the :c:type:`PyArrayObject` structure members. The input
+argument, arr, can be any :c:type:`PyObject *` that is directly interpretable
+as a :c:type:`PyArrayObject *` (any instance of the :c:data:`PyArray_Type` and its
sub-types).
-.. cfunction:: int PyArray_NDIM(PyArrayObject *arr)
+.. c:function:: int PyArray_NDIM(PyArrayObject *arr)
The number of dimensions in the array.
-.. cfunction:: npy_intp *PyArray_DIMS(PyArrayObject *arr)
+.. c:function:: npy_intp *PyArray_DIMS(PyArrayObject *arr)
Returns a pointer to the dimensions/shape of the array. The
number of elements matches the number of dimensions
of the array.
-.. cfunction:: npy_intp *PyArray_SHAPE(PyArrayObject *arr)
+.. c:function:: npy_intp *PyArray_SHAPE(PyArrayObject *arr)
.. versionadded:: 1.7
A synonym for PyArray_DIMS, named to be consistent with the
'shape' usage within Python.
-.. cfunction:: void *PyArray_DATA(PyArrayObject *arr)
+.. c:function:: void *PyArray_DATA(PyArrayObject *arr)
-.. cfunction:: char *PyArray_BYTES(PyArrayObject *arr)
+.. c:function:: char *PyArray_BYTES(PyArrayObject *arr)
These two macros are similar and obtain the pointer to the
data-buffer for the array. The first macro can (and should be)
@@ -53,94 +53,94 @@ sub-types).
array then be sure you understand how to access the data in the
array to avoid memory and/or alignment problems.
-.. cfunction:: npy_intp *PyArray_STRIDES(PyArrayObject* arr)
+.. c:function:: npy_intp *PyArray_STRIDES(PyArrayObject* arr)
Returns a pointer to the strides of the array. The
number of elements matches the number of dimensions
of the array.
-.. cfunction:: npy_intp PyArray_DIM(PyArrayObject* arr, int n)
+.. c:function:: npy_intp PyArray_DIM(PyArrayObject* arr, int n)
Return the shape in the *n* :math:`^{\textrm{th}}` dimension.
-.. cfunction:: npy_intp PyArray_STRIDE(PyArrayObject* arr, int n)
+.. c:function:: npy_intp PyArray_STRIDE(PyArrayObject* arr, int n)
Return the stride in the *n* :math:`^{\textrm{th}}` dimension.
-.. cfunction:: PyObject *PyArray_BASE(PyArrayObject* arr)
+.. c:function:: PyObject *PyArray_BASE(PyArrayObject* arr)
This returns the base object of the array. In most cases, this
means the object which owns the memory the array is pointing at.
If you are constructing an array using the C API, and specifying
- your own memory, you should use the function :cfunc:`PyArray_SetBaseObject`
+ your own memory, you should use the function :c:func:`PyArray_SetBaseObject`
to set the base to an object which owns the memory.
- If the :cdata:`NPY_ARRAY_UPDATEIFCOPY` flag is set, it has a different
+ If the :c:data:`NPY_ARRAY_UPDATEIFCOPY` flag is set, it has a different
meaning, namely base is the array into which the current array will
be copied upon destruction. This overloading of the base property
for two functions is likely to change in a future version of NumPy.
-.. cfunction:: PyArray_Descr *PyArray_DESCR(PyArrayObject* arr)
+.. c:function:: PyArray_Descr *PyArray_DESCR(PyArrayObject* arr)
Returns a borrowed reference to the dtype property of the array.
-.. cfunction:: PyArray_Descr *PyArray_DTYPE(PyArrayObject* arr)
+.. c:function:: PyArray_Descr *PyArray_DTYPE(PyArrayObject* arr)
.. versionadded:: 1.7
A synonym for PyArray_DESCR, named to be consistent with the
'dtype' usage within Python.
-.. cfunction:: void PyArray_ENABLEFLAGS(PyArrayObject* arr, int flags)
+.. c:function:: void PyArray_ENABLEFLAGS(PyArrayObject* arr, int flags)
.. versionadded:: 1.7
Enables the specified array flags. This function does no validation,
and assumes that you know what you're doing.
-.. cfunction:: void PyArray_CLEARFLAGS(PyArrayObject* arr, int flags)
+.. c:function:: void PyArray_CLEARFLAGS(PyArrayObject* arr, int flags)
.. versionadded:: 1.7
Clears the specified array flags. This function does no validation,
and assumes that you know what you're doing.
-.. cfunction:: int PyArray_FLAGS(PyArrayObject* arr)
+.. c:function:: int PyArray_FLAGS(PyArrayObject* arr)
-.. cfunction:: npy_intp PyArray_ITEMSIZE(PyArrayObject* arr)
+.. c:function:: npy_intp PyArray_ITEMSIZE(PyArrayObject* arr)
Return the itemsize for the elements of this array.
Note that, in the old API that was deprecated in version 1.7, this function
had the return type ``int``.
-.. cfunction:: int PyArray_TYPE(PyArrayObject* arr)
+.. c:function:: int PyArray_TYPE(PyArrayObject* arr)
Return the (builtin) typenumber for the elements of this array.
-.. cfunction:: PyObject *PyArray_GETITEM(PyArrayObject* arr, void* itemptr)
+.. c:function:: PyObject *PyArray_GETITEM(PyArrayObject* arr, void* itemptr)
Get a Python object from the ndarray, *arr*, at the location
pointed to by itemptr. Return ``NULL`` on failure.
-.. cfunction:: int PyArray_SETITEM(PyArrayObject* arr, void* itemptr, PyObject* obj)
+.. c:function:: int PyArray_SETITEM(PyArrayObject* arr, void* itemptr, PyObject* obj)
Convert obj and place it in the ndarray, *arr*, at the place
pointed to by itemptr. Return -1 if an error occurs or 0 on
success.
-.. cfunction:: npy_intp PyArray_SIZE(PyArrayObject* arr)
+.. c:function:: npy_intp PyArray_SIZE(PyArrayObject* arr)
Returns the total size (in number of elements) of the array.
-.. cfunction:: npy_intp PyArray_Size(PyArrayObject* obj)
+.. c:function:: npy_intp PyArray_Size(PyArrayObject* obj)
Returns 0 if *obj* is not a sub-class of bigndarray. Otherwise,
returns the total number of elements in the array. Safer version
- of :cfunc:`PyArray_SIZE` (*obj*).
+ of :c:func:`PyArray_SIZE` (*obj*).
-.. cfunction:: npy_intp PyArray_NBYTES(PyArrayObject* arr)
+.. c:function:: npy_intp PyArray_NBYTES(PyArrayObject* arr)
Returns the total number of bytes consumed by the array.
@@ -154,27 +154,27 @@ when accessing the data in the array, however, if it is not in machine
byte-order, misaligned, or not writeable. In other words, be sure to
respect the state of the flags unless you know what you are doing, or
have previously guaranteed an array that is writeable, aligned, and in
-machine byte-order using :cfunc:`PyArray_FromAny`. If you wish to handle all
+machine byte-order using :c:func:`PyArray_FromAny`. If you wish to handle all
types of arrays, the copyswap function for each type is useful for
handling misbehaved arrays. Some platforms (e.g. Solaris) do not like
misaligned data and will crash if you de-reference a misaligned
pointer. Other platforms (e.g. x86 Linux) will just work more slowly
with misaligned data.
-.. cfunction:: void* PyArray_GetPtr(PyArrayObject* aobj, npy_intp* ind)
+.. c:function:: void* PyArray_GetPtr(PyArrayObject* aobj, npy_intp* ind)
Return a pointer to the data of the ndarray, *aobj*, at the
N-dimensional index given by the c-array, *ind*, (which must be
at least *aobj* ->nd in size). You may want to typecast the
returned pointer to the data type of the ndarray.
-.. cfunction:: void* PyArray_GETPTR1(PyArrayObject* obj, npy_intp i)
+.. c:function:: void* PyArray_GETPTR1(PyArrayObject* obj, npy_intp i)
-.. cfunction:: void* PyArray_GETPTR2(PyArrayObject* obj, npy_intp i, npy_intp j)
+.. c:function:: void* PyArray_GETPTR2(PyArrayObject* obj, npy_intp i, npy_intp j)
-.. cfunction:: void* PyArray_GETPTR3(PyArrayObject* obj, npy_intp i, npy_intp j, npy_intp k)
+.. c:function:: void* PyArray_GETPTR3(PyArrayObject* obj, npy_intp i, npy_intp j, npy_intp k)
-.. cfunction:: void* PyArray_GETPTR4(PyArrayObject* obj, npy_intp i, npy_intp j, npy_intp k, npy_intp l)
+.. c:function:: void* PyArray_GETPTR4(PyArrayObject* obj, npy_intp i, npy_intp j, npy_intp k, npy_intp l)
Quick, inline access to the element at the given coordinates in
the ndarray, *obj*, which must have respectively 1, 2, 3, or 4
@@ -191,7 +191,7 @@ Creating arrays
From scratch
^^^^^^^^^^^^
-.. cfunction:: PyObject* PyArray_NewFromDescr(PyTypeObject* subtype, PyArray_Descr* descr, int nd, npy_intp* dims, npy_intp* strides, void* data, int flags, PyObject* obj)
+.. c:function:: PyObject* PyArray_NewFromDescr(PyTypeObject* subtype, PyArray_Descr* descr, int nd, npy_intp* dims, npy_intp* strides, void* data, int flags, PyObject* obj)
This function steals a reference to *descr*.
@@ -199,31 +199,31 @@ From scratch
created with this flexible function.
The returned object is an object of Python-type *subtype*, which
- must be a subtype of :cdata:`PyArray_Type`. The array has *nd*
+ must be a subtype of :c:data:`PyArray_Type`. The array has *nd*
dimensions, described by *dims*. The data-type descriptor of the
new array is *descr*.
If *subtype* is of an array subclass instead of the base
- :cdata:`&PyArray_Type`, then *obj* is the object to pass to
+ :c:data:`&PyArray_Type`, then *obj* is the object to pass to
the :obj:`__array_finalize__` method of the subclass.
If *data* is ``NULL``, then new memory will be allocated and *flags*
can be non-zero to indicate a Fortran-style contiguous array. If
*data* is not ``NULL``, then it is assumed to point to the memory
to be used for the array and the *flags* argument is used as the
- new flags for the array (except the state of :cdata:`NPY_OWNDATA`
- and :cdata:`NPY_ARRAY_UPDATEIFCOPY` flags of the new array will
+ new flags for the array (except the state of :c:data:`NPY_OWNDATA`
+ and :c:data:`NPY_ARRAY_UPDATEIFCOPY` flags of the new array will
be reset).
In addition, if *data* is non-NULL, then *strides* can
also be provided. If *strides* is ``NULL``, then the array strides
are computed as C-style contiguous (default) or Fortran-style
contiguous (*flags* is nonzero for *data* = ``NULL`` or *flags* &
- :cdata:`NPY_ARRAY_F_CONTIGUOUS` is nonzero non-NULL *data*). Any
+ :c:data:`NPY_ARRAY_F_CONTIGUOUS` is nonzero non-NULL *data*). Any
provided *dims* and *strides* are copied into newly allocated
dimension and strides arrays for the new array object.
-.. cfunction:: PyObject* PyArray_NewLikeArray(PyArrayObject* prototype, NPY_ORDER order, PyArray_Descr* descr, int subok)
+.. c:function:: PyObject* PyArray_NewLikeArray(PyArrayObject* prototype, NPY_ORDER order, PyArray_Descr* descr, int subok)
.. versionadded:: 1.6
@@ -233,10 +233,10 @@ From scratch
a new array matching an existing array's shapes and memory layout,
possibly changing the layout and/or data type.
- When *order* is :cdata:`NPY_ANYORDER`, the result order is
- :cdata:`NPY_FORTRANORDER` if *prototype* is a fortran array,
- :cdata:`NPY_CORDER` otherwise. When *order* is
- :cdata:`NPY_KEEPORDER`, the result order matches that of *prototype*, even
+ When *order* is :c:data:`NPY_ANYORDER`, the result order is
+ :c:data:`NPY_FORTRANORDER` if *prototype* is a fortran array,
+ :c:data:`NPY_CORDER` otherwise. When *order* is
+ :c:data:`NPY_KEEPORDER`, the result order matches that of *prototype*, even
when the axes of *prototype* aren't in C or Fortran order.
If *descr* is NULL, the data type of *prototype* is used.
@@ -245,9 +245,9 @@ From scratch
*prototype* to create the new array, otherwise it will create a
base-class array.
-.. cfunction:: PyObject* PyArray_New(PyTypeObject* subtype, int nd, npy_intp* dims, int type_num, npy_intp* strides, void* data, int itemsize, int flags, PyObject* obj)
+.. c:function:: PyObject* PyArray_New(PyTypeObject* subtype, int nd, npy_intp* dims, int type_num, npy_intp* strides, void* data, int itemsize, int flags, PyObject* obj)
- This is similar to :cfunc:`PyArray_DescrNew` (...) except you
+ This is similar to :c:func:`PyArray_DescrNew` (...) except you
specify the data-type descriptor with *type_num* and *itemsize*,
where *type_num* corresponds to a builtin (or user-defined)
type. If the type always has the same number of bytes, then
@@ -258,22 +258,22 @@ From scratch
.. warning::
- If data is passed to :cfunc:`PyArray_NewFromDescr` or :cfunc:`PyArray_New`,
+ If data is passed to :c:func:`PyArray_NewFromDescr` or :c:func:`PyArray_New`,
this memory must not be deallocated until the new array is
deleted. If this data came from another Python object, this can
- be accomplished using :cfunc:`Py_INCREF` on that object and setting the
+ be accomplished using :c:func:`Py_INCREF` on that object and setting the
base member of the new array to point to that object. If strides
are passed in they must be consistent with the dimensions, the
itemsize, and the data of the array.
-.. cfunction:: PyObject* PyArray_SimpleNew(int nd, npy_intp* dims, int typenum)
+.. c:function:: PyObject* PyArray_SimpleNew(int nd, npy_intp* dims, int typenum)
Create a new unitialized array of type, *typenum*, whose size in
each of *nd* dimensions is given by the integer array, *dims*.
This function cannot be used to create a flexible-type array (no
itemsize given).
-.. cfunction:: PyObject* PyArray_SimpleNewFromData(int nd, npy_intp* dims, int typenum, void* data)
+.. c:function:: PyObject* PyArray_SimpleNewFromData(int nd, npy_intp* dims, int typenum, void* data)
Create an array wrapper around *data* pointed to by the given
pointer. The array flags will have a default that the data area is
@@ -281,60 +281,60 @@ From scratch
given by the *dims* c-array of length *nd*. The data-type of the
array is indicated by *typenum*.
-.. cfunction:: PyObject* PyArray_SimpleNewFromDescr(int nd, npy_intp* dims, PyArray_Descr* descr)
+.. c:function:: PyObject* PyArray_SimpleNewFromDescr(int nd, npy_intp* dims, PyArray_Descr* descr)
This function steals a reference to *descr* if it is not NULL.
Create a new array with the provided data-type descriptor, *descr*
, of the shape deteremined by *nd* and *dims*.
-.. cfunction:: PyArray_FILLWBYTE(PyObject* obj, int val)
+.. c:function:: PyArray_FILLWBYTE(PyObject* obj, int val)
Fill the array pointed to by *obj* ---which must be a (subclass
of) bigndarray---with the contents of *val* (evaluated as a byte).
This macro calls memset, so obj must be contiguous.
-.. cfunction:: PyObject* PyArray_Zeros(int nd, npy_intp* dims, PyArray_Descr* dtype, int fortran)
+.. c:function:: PyObject* PyArray_Zeros(int nd, npy_intp* dims, PyArray_Descr* dtype, int fortran)
Construct a new *nd* -dimensional array with shape given by *dims*
and data type given by *dtype*. If *fortran* is non-zero, then a
Fortran-order array is created, otherwise a C-order array is
created. Fill the memory with zeros (or the 0 object if *dtype*
- corresponds to :ctype:`NPY_OBJECT` ).
+ corresponds to :c:type:`NPY_OBJECT` ).
-.. cfunction:: PyObject* PyArray_ZEROS(int nd, npy_intp* dims, int type_num, int fortran)
+.. c:function:: PyObject* PyArray_ZEROS(int nd, npy_intp* dims, int type_num, int fortran)
- Macro form of :cfunc:`PyArray_Zeros` which takes a type-number instead
+ Macro form of :c:func:`PyArray_Zeros` which takes a type-number instead
of a data-type object.
-.. cfunction:: PyObject* PyArray_Empty(int nd, npy_intp* dims, PyArray_Descr* dtype, int fortran)
+.. c:function:: PyObject* PyArray_Empty(int nd, npy_intp* dims, PyArray_Descr* dtype, int fortran)
Construct a new *nd* -dimensional array with shape given by *dims*
and data type given by *dtype*. If *fortran* is non-zero, then a
Fortran-order array is created, otherwise a C-order array is
created. The array is uninitialized unless the data type
- corresponds to :ctype:`NPY_OBJECT` in which case the array is
- filled with :cdata:`Py_None`.
+ corresponds to :c:type:`NPY_OBJECT` in which case the array is
+ filled with :c:data:`Py_None`.
-.. cfunction:: PyObject* PyArray_EMPTY(int nd, npy_intp* dims, int typenum, int fortran)
+.. c:function:: PyObject* PyArray_EMPTY(int nd, npy_intp* dims, int typenum, int fortran)
- Macro form of :cfunc:`PyArray_Empty` which takes a type-number,
+ Macro form of :c:func:`PyArray_Empty` which takes a type-number,
*typenum*, instead of a data-type object.
-.. cfunction:: PyObject* PyArray_Arange(double start, double stop, double step, int typenum)
+.. c:function:: PyObject* PyArray_Arange(double start, double stop, double step, int typenum)
Construct a new 1-dimensional array of data-type, *typenum*, that
ranges from *start* to *stop* (exclusive) in increments of *step*
. Equivalent to **arange** (*start*, *stop*, *step*, dtype).
-.. cfunction:: PyObject* PyArray_ArangeObj(PyObject* start, PyObject* stop, PyObject* step, PyArray_Descr* descr)
+.. c:function:: PyObject* PyArray_ArangeObj(PyObject* start, PyObject* stop, PyObject* step, PyArray_Descr* descr)
Construct a new 1-dimensional array of data-type determined by
``descr``, that ranges from ``start`` to ``stop`` (exclusive) in
increments of ``step``. Equivalent to arange( ``start``,
``stop``, ``step``, ``typenum`` ).
-.. cfunction:: int PyArray_SetBaseObject(PyArrayObject* arr, PyObject* obj)
+.. c:function:: int PyArray_SetBaseObject(PyArrayObject* arr, PyObject* obj)
.. versionadded:: 1.7
@@ -355,21 +355,21 @@ From scratch
From other objects
^^^^^^^^^^^^^^^^^^
-.. cfunction:: PyObject* PyArray_FromAny(PyObject* op, PyArray_Descr* dtype, int min_depth, int max_depth, int requirements, PyObject* context)
+.. c:function:: PyObject* PyArray_FromAny(PyObject* op, PyArray_Descr* dtype, int min_depth, int max_depth, int requirements, PyObject* context)
This is the main function used to obtain an array from any nested
sequence, or object that exposes the array interface, *op*. The
parameters allow specification of the required *dtype*, the
minimum (*min_depth*) and maximum (*max_depth*) number of
dimensions acceptable, and other *requirements* for the array. The
- *dtype* argument needs to be a :ctype:`PyArray_Descr` structure
+ *dtype* argument needs to be a :c:type:`PyArray_Descr` structure
indicating the desired data-type (including required
byteorder). The *dtype* argument may be NULL, indicating that any
data-type (and byteorder) is acceptable. Unless ``FORCECAST`` is
present in ``flags``, this call will generate an error if the data
type cannot be safely obtained from the object. If you want to use
``NULL`` for the *dtype* and ensure the array is notswapped then
- use :cfunc:`PyArray_CheckFromAny`. A value of 0 for either of the
+ use :c:func:`PyArray_CheckFromAny`. A value of 0 for either of the
depth parameters causes the parameter to be ignored. Any of the
following array flags can be added (*e.g.* using \|) to get the
*requirements* argument. If your code can handle general (*e.g.*
@@ -377,7 +377,7 @@ From other objects
may be 0. Also, if *op* is not already an array (or does not
expose the array interface), then a new array will be created (and
filled from *op* using the sequence protocol). The new array will
- have :cdata:`NPY_DEFAULT` as its flags member. The *context* argument
+ have :c:data:`NPY_DEFAULT` as its flags member. The *context* argument
is passed to the :obj:`__array__` method of *op* and is only used if
the array is constructed that way. Almost always this
parameter is ``NULL``.
@@ -386,50 +386,50 @@ From other objects
did not have the _ARRAY_ macro namespace in them. That form
of the constant names is deprecated in 1.7.
- .. cvar:: NPY_ARRAY_C_CONTIGUOUS
+ .. c:var:: NPY_ARRAY_C_CONTIGUOUS
Make sure the returned array is C-style contiguous
- .. cvar:: NPY_ARRAY_F_CONTIGUOUS
+ .. c:var:: NPY_ARRAY_F_CONTIGUOUS
Make sure the returned array is Fortran-style contiguous.
- .. cvar:: NPY_ARRAY_ALIGNED
+ .. c:var:: NPY_ARRAY_ALIGNED
Make sure the returned array is aligned on proper boundaries for its
data type. An aligned array has the data pointer and every strides
factor as a multiple of the alignment factor for the data-type-
descriptor.
- .. cvar:: NPY_ARRAY_WRITEABLE
+ .. c:var:: NPY_ARRAY_WRITEABLE
Make sure the returned array can be written to.
- .. cvar:: NPY_ARRAY_ENSURECOPY
+ .. c:var:: NPY_ARRAY_ENSURECOPY
Make sure a copy is made of *op*. If this flag is not
present, data is not copied if it can be avoided.
- .. cvar:: NPY_ARRAY_ENSUREARRAY
+ .. c:var:: NPY_ARRAY_ENSUREARRAY
Make sure the result is a base-class ndarray or bigndarray. By
default, if *op* is an instance of a subclass of the
bigndarray, an instance of that same subclass is returned. If
this flag is set, an ndarray object will be returned instead.
- .. cvar:: NPY_ARRAY_FORCECAST
+ .. c:var:: NPY_ARRAY_FORCECAST
Force a cast to the output type even if it cannot be done
safely. Without this flag, a data cast will occur only if it
can be done safely, otherwise an error is reaised.
- .. cvar:: NPY_ARRAY_UPDATEIFCOPY
+ .. c:var:: NPY_ARRAY_UPDATEIFCOPY
If *op* is already an array, but does not satisfy the
requirements, then a copy is made (which will satisfy the
requirements). If this flag is present and a copy (of an object
that is already an array) must be made, then the corresponding
- :cdata:`NPY_ARRAY_UPDATEIFCOPY` flag is set in the returned
+ :c:data:`NPY_ARRAY_UPDATEIFCOPY` flag is set in the returned
copy and *op* is made to be read-only. When the returned copy
is deleted (presumably after your calculations are complete),
its contents will be copied back into *op* and the *op* array
@@ -437,59 +437,59 @@ From other objects
with, then an error is raised. If *op* is not already an array,
then this flag has no effect.
- .. cvar:: NPY_ARRAY_BEHAVED
+ .. c:var:: NPY_ARRAY_BEHAVED
- :cdata:`NPY_ARRAY_ALIGNED` \| :cdata:`NPY_ARRAY_WRITEABLE`
+ :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_WRITEABLE`
- .. cvar:: NPY_ARRAY_CARRAY
+ .. c:var:: NPY_ARRAY_CARRAY
- :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_BEHAVED`
+ :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_BEHAVED`
- .. cvar:: NPY_ARRAY_CARRAY_RO
+ .. c:var:: NPY_ARRAY_CARRAY_RO
- :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_ALIGNED`
+ :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED`
- .. cvar:: NPY_ARRAY_FARRAY
+ .. c:var:: NPY_ARRAY_FARRAY
- :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_BEHAVED`
+ :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_BEHAVED`
- .. cvar:: NPY_ARRAY_FARRAY_RO
+ .. c:var:: NPY_ARRAY_FARRAY_RO
- :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_ALIGNED`
+ :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED`
- .. cvar:: NPY_ARRAY_DEFAULT
+ .. c:var:: NPY_ARRAY_DEFAULT
- :cdata:`NPY_ARRAY_CARRAY`
+ :c:data:`NPY_ARRAY_CARRAY`
- .. cvar:: NPY_ARRAY_IN_ARRAY
+ .. c:var:: NPY_ARRAY_IN_ARRAY
- :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_ALIGNED`
+ :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED`
- .. cvar:: NPY_ARRAY_IN_FARRAY
+ .. c:var:: NPY_ARRAY_IN_FARRAY
- :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_ALIGNED`
+ :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED`
- .. cvar:: NPY_OUT_ARRAY
+ .. c:var:: NPY_OUT_ARRAY
- :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_WRITEABLE` \|
- :cdata:`NPY_ARRAY_ALIGNED`
+ :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_WRITEABLE` \|
+ :c:data:`NPY_ARRAY_ALIGNED`
- .. cvar:: NPY_ARRAY_OUT_FARRAY
+ .. c:var:: NPY_ARRAY_OUT_FARRAY
- :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_WRITEABLE` \|
- :cdata:`NPY_ARRAY_ALIGNED`
+ :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_WRITEABLE` \|
+ :c:data:`NPY_ARRAY_ALIGNED`
- .. cvar:: NPY_ARRAY_INOUT_ARRAY
+ .. c:var:: NPY_ARRAY_INOUT_ARRAY
- :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_WRITEABLE` \|
- :cdata:`NPY_ARRAY_ALIGNED` \| :cdata:`NPY_ARRAY_UPDATEIFCOPY`
+ :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_WRITEABLE` \|
+ :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_UPDATEIFCOPY`
- .. cvar:: NPY_ARRAY_INOUT_FARRAY
+ .. c:var:: NPY_ARRAY_INOUT_FARRAY
- :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_WRITEABLE` \|
- :cdata:`NPY_ARRAY_ALIGNED` \| :cdata:`NPY_ARRAY_UPDATEIFCOPY`
+ :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_WRITEABLE` \|
+ :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_UPDATEIFCOPY`
-.. cfunction:: int PyArray_GetArrayParamsFromObject(PyObject* op, PyArray_Descr* requested_dtype, npy_bool writeable, PyArray_Descr** out_dtype, int* out_ndim, npy_intp* out_dims, PyArrayObject** out_arr, PyObject* context)
+.. c:function:: int PyArray_GetArrayParamsFromObject(PyObject* op, PyArray_Descr* requested_dtype, npy_bool writeable, PyArray_Descr** out_dtype, int* out_ndim, npy_intp* out_dims, PyArrayObject** out_arr, PyObject* context)
.. versionadded:: 1.6
@@ -552,11 +552,11 @@ From other objects
}
... use arr ...
-.. cfunction:: PyObject* PyArray_CheckFromAny(PyObject* op, PyArray_Descr* dtype, int min_depth, int max_depth, int requirements, PyObject* context)
+.. c:function:: PyObject* PyArray_CheckFromAny(PyObject* op, PyArray_Descr* dtype, int min_depth, int max_depth, int requirements, PyObject* context)
- Nearly identical to :cfunc:`PyArray_FromAny` (...) except
- *requirements* can contain :cdata:`NPY_ARRAY_NOTSWAPPED` (over-riding the
- specification in *dtype*) and :cdata:`NPY_ARRAY_ELEMENTSTRIDES` which
+ Nearly identical to :c:func:`PyArray_FromAny` (...) except
+ *requirements* can contain :c:data:`NPY_ARRAY_NOTSWAPPED` (over-riding the
+ specification in *dtype*) and :c:data:`NPY_ARRAY_ELEMENTSTRIDES` which
indicates that the array should be aligned in the sense that the
strides are multiples of the element size.
@@ -564,7 +564,7 @@ From other objects
did not have the _ARRAY_ macro namespace in them. That form
of the constant names is deprecated in 1.7.
-.. cvar:: NPY_ARRAY_NOTSWAPPED
+.. c:var:: NPY_ARRAY_NOTSWAPPED
Make sure the returned array has a data-type descriptor that is in
machine byte-order, over-riding any specification in the *dtype*
@@ -575,36 +575,36 @@ From other objects
not in machine byte- order), then a new data-type descriptor is
created and used with its byte-order field set to native.
-.. cvar:: NPY_ARRAY_BEHAVED_NS
+.. c:var:: NPY_ARRAY_BEHAVED_NS
- :cdata:`NPY_ARRAY_ALIGNED` \| :cdata:`NPY_ARRAY_WRITEABLE` \| :cdata:`NPY_ARRAY_NOTSWAPPED`
+ :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_WRITEABLE` \| :c:data:`NPY_ARRAY_NOTSWAPPED`
-.. cvar:: NPY_ARRAY_ELEMENTSTRIDES
+.. c:var:: NPY_ARRAY_ELEMENTSTRIDES
Make sure the returned array has strides that are multiples of the
element size.
-.. cfunction:: PyObject* PyArray_FromArray(PyArrayObject* op, PyArray_Descr* newtype, int requirements)
+.. c:function:: PyObject* PyArray_FromArray(PyArrayObject* op, PyArray_Descr* newtype, int requirements)
- Special case of :cfunc:`PyArray_FromAny` for when *op* is already an
+ Special case of :c:func:`PyArray_FromAny` for when *op* is already an
array but it needs to be of a specific *newtype* (including
byte-order) or has certain *requirements*.
-.. cfunction:: PyObject* PyArray_FromStructInterface(PyObject* op)
+.. c:function:: PyObject* PyArray_FromStructInterface(PyObject* op)
Returns an ndarray object from a Python object that exposes the
:obj:`__array_struct__` attribute and follows the array interface
protocol. If the object does not contain this attribute then a
- borrowed reference to :cdata:`Py_NotImplemented` is returned.
+ borrowed reference to :c:data:`Py_NotImplemented` is returned.
-.. cfunction:: PyObject* PyArray_FromInterface(PyObject* op)
+.. c:function:: PyObject* PyArray_FromInterface(PyObject* op)
Returns an ndarray object from a Python object that exposes the
:obj:`__array_interface__` attribute following the array interface
protocol. If the object does not contain this attribute then a
- borrowed reference to :cdata:`Py_NotImplemented` is returned.
+ borrowed reference to :c:data:`Py_NotImplemented` is returned.
-.. cfunction:: PyObject* PyArray_FromArrayAttr(PyObject* op, PyArray_Descr* dtype, PyObject* context)
+.. c:function:: PyObject* PyArray_FromArrayAttr(PyObject* op, PyArray_Descr* dtype, PyObject* context)
Return an ndarray object from a Python object that exposes the
:obj:`__array__` method. The :obj:`__array__` method can take 0, 1, or 2
@@ -612,33 +612,33 @@ From other objects
information about where the :obj:`__array__` method is being called
from (currently only used in ufuncs).
-.. cfunction:: PyObject* PyArray_ContiguousFromAny(PyObject* op, int typenum, int min_depth, int max_depth)
+.. c:function:: PyObject* PyArray_ContiguousFromAny(PyObject* op, int typenum, int min_depth, int max_depth)
This function returns a (C-style) contiguous and behaved function
array from any nested sequence or array interface exporting
object, *op*, of (non-flexible) type given by the enumerated
*typenum*, of minimum depth *min_depth*, and of maximum depth
- *max_depth*. Equivalent to a call to :cfunc:`PyArray_FromAny` with
- requirements set to :cdata:`NPY_DEFAULT` and the type_num member of the
+ *max_depth*. Equivalent to a call to :c:func:`PyArray_FromAny` with
+ requirements set to :c:data:`NPY_DEFAULT` and the type_num member of the
type argument set to *typenum*.
-.. cfunction:: PyObject *PyArray_FromObject(PyObject *op, int typenum, int min_depth, int max_depth)
+.. c:function:: PyObject *PyArray_FromObject(PyObject *op, int typenum, int min_depth, int max_depth)
Return an aligned and in native-byteorder array from any nested
sequence or array-interface exporting object, op, of a type given by
the enumerated typenum. The minimum number of dimensions the array can
have is given by min_depth while the maximum is max_depth. This is
- equivalent to a call to :cfunc:`PyArray_FromAny` with requirements set to
+ equivalent to a call to :c:func:`PyArray_FromAny` with requirements set to
BEHAVED.
-.. cfunction:: PyObject* PyArray_EnsureArray(PyObject* op)
+.. c:function:: PyObject* PyArray_EnsureArray(PyObject* op)
This function **steals a reference** to ``op`` and makes sure that
``op`` is a base-class ndarray. It special cases array scalars,
- but otherwise calls :cfunc:`PyArray_FromAny` ( ``op``, NULL, 0, 0,
- :cdata:`NPY_ARRAY_ENSUREARRAY`).
+ but otherwise calls :c:func:`PyArray_FromAny` ( ``op``, NULL, 0, 0,
+ :c:data:`NPY_ARRAY_ENSUREARRAY`).
-.. cfunction:: PyObject* PyArray_FromString(char* string, npy_intp slen, PyArray_Descr* dtype, npy_intp num, char* sep)
+.. c:function:: PyObject* PyArray_FromString(char* string, npy_intp slen, PyArray_Descr* dtype, npy_intp num, char* sep)
Construct a one-dimensional ndarray of a single type from a binary
or (ASCII) text ``string`` of length ``slen``. The data-type of
@@ -651,7 +651,7 @@ From other objects
data-types may not be readable in text mode and an error will be
raised if that occurs. All errors return NULL.
-.. cfunction:: PyObject* PyArray_FromFile(FILE* fp, PyArray_Descr* dtype, npy_intp num, char* sep)
+.. c:function:: PyObject* PyArray_FromFile(FILE* fp, PyArray_Descr* dtype, npy_intp num, char* sep)
Construct a one-dimensional ndarray of a single type from a binary
or text file. The open file pointer is ``fp``, the data-type of
@@ -664,13 +664,13 @@ From other objects
separator. Some array types cannot be read in text mode in which
case an error is raised.
-.. cfunction:: PyObject* PyArray_FromBuffer(PyObject* buf, PyArray_Descr* dtype, npy_intp count, npy_intp offset)
+.. c:function:: PyObject* PyArray_FromBuffer(PyObject* buf, PyArray_Descr* dtype, npy_intp count, npy_intp offset)
Construct a one-dimensional ndarray of a single type from an
object, ``buf``, that exports the (single-segment) buffer protocol
(or has an attribute __buffer\__ that returns an object that
exports the buffer protocol). A writeable buffer will be tried
- first followed by a read- only buffer. The :cdata:`NPY_ARRAY_WRITEABLE`
+ first followed by a read- only buffer. The :c:data:`NPY_ARRAY_WRITEABLE`
flag of the returned array will reflect which one was
successful. The data is assumed to start at ``offset`` bytes from
the start of the memory location for the object. The type of the
@@ -680,7 +680,7 @@ From other objects
otherwise, ``count`` represents how many elements should be
converted from the buffer.
-.. cfunction:: int PyArray_CopyInto(PyArrayObject* dest, PyArrayObject* src)
+.. c:function:: int PyArray_CopyInto(PyArrayObject* dest, PyArrayObject* src)
Copy from the source array, ``src``, into the destination array,
``dest``, performing a data-type conversion if necessary. If an
@@ -688,7 +688,7 @@ From other objects
broadcastable to the shape of ``dest``. The data areas of dest
and src must not overlap.
-.. cfunction:: int PyArray_MoveInto(PyArrayObject* dest, PyArrayObject* src)
+.. c:function:: int PyArray_MoveInto(PyArrayObject* dest, PyArrayObject* src)
Move data from the source array, ``src``, into the destination
array, ``dest``, performing a data-type conversion if
@@ -696,52 +696,52 @@ From other objects
of ``src`` must be broadcastable to the shape of ``dest``. The
data areas of dest and src may overlap.
-.. cfunction:: PyArrayObject* PyArray_GETCONTIGUOUS(PyObject* op)
+.. c:function:: PyArrayObject* PyArray_GETCONTIGUOUS(PyObject* op)
If ``op`` is already (C-style) contiguous and well-behaved then
just return a reference, otherwise return a (contiguous and
well-behaved) copy of the array. The parameter op must be a
(sub-class of an) ndarray and no checking for that is done.
-.. cfunction:: PyObject* PyArray_FROM_O(PyObject* obj)
+.. c:function:: PyObject* PyArray_FROM_O(PyObject* obj)
Convert ``obj`` to an ndarray. The argument can be any nested
sequence or object that exports the array interface. This is a
- macro form of :cfunc:`PyArray_FromAny` using ``NULL``, 0, 0, 0 for the
+ macro form of :c:func:`PyArray_FromAny` using ``NULL``, 0, 0, 0 for the
other arguments. Your code must be able to handle any data-type
descriptor and any combination of data-flags to use this macro.
-.. cfunction:: PyObject* PyArray_FROM_OF(PyObject* obj, int requirements)
+.. c:function:: PyObject* PyArray_FROM_OF(PyObject* obj, int requirements)
- Similar to :cfunc:`PyArray_FROM_O` except it can take an argument
+ Similar to :c:func:`PyArray_FROM_O` except it can take an argument
of *requirements* indicating properties the resulting array must
have. Available requirements that can be enforced are
- :cdata:`NPY_ARRAY_C_CONTIGUOUS`, :cdata:`NPY_ARRAY_F_CONTIGUOUS`,
- :cdata:`NPY_ARRAY_ALIGNED`, :cdata:`NPY_ARRAY_WRITEABLE`,
- :cdata:`NPY_ARRAY_NOTSWAPPED`, :cdata:`NPY_ARRAY_ENSURECOPY`,
- :cdata:`NPY_ARRAY_UPDATEIFCOPY`, :cdata:`NPY_ARRAY_FORCECAST`, and
- :cdata:`NPY_ARRAY_ENSUREARRAY`. Standard combinations of flags can also
+ :c:data:`NPY_ARRAY_C_CONTIGUOUS`, :c:data:`NPY_ARRAY_F_CONTIGUOUS`,
+ :c:data:`NPY_ARRAY_ALIGNED`, :c:data:`NPY_ARRAY_WRITEABLE`,
+ :c:data:`NPY_ARRAY_NOTSWAPPED`, :c:data:`NPY_ARRAY_ENSURECOPY`,
+ :c:data:`NPY_ARRAY_UPDATEIFCOPY`, :c:data:`NPY_ARRAY_FORCECAST`, and
+ :c:data:`NPY_ARRAY_ENSUREARRAY`. Standard combinations of flags can also
be used:
-.. cfunction:: PyObject* PyArray_FROM_OT(PyObject* obj, int typenum)
+.. c:function:: PyObject* PyArray_FROM_OT(PyObject* obj, int typenum)
- Similar to :cfunc:`PyArray_FROM_O` except it can take an argument of
+ Similar to :c:func:`PyArray_FROM_O` except it can take an argument of
*typenum* specifying the type-number the returned array.
-.. cfunction:: PyObject* PyArray_FROM_OTF(PyObject* obj, int typenum, int requirements)
+.. c:function:: PyObject* PyArray_FROM_OTF(PyObject* obj, int typenum, int requirements)
- Combination of :cfunc:`PyArray_FROM_OF` and :cfunc:`PyArray_FROM_OT`
+ Combination of :c:func:`PyArray_FROM_OF` and :c:func:`PyArray_FROM_OT`
allowing both a *typenum* and a *flags* argument to be provided..
-.. cfunction:: PyObject* PyArray_FROMANY(PyObject* obj, int typenum, int min, int max, int requirements)
+.. c:function:: PyObject* PyArray_FROMANY(PyObject* obj, int typenum, int min, int max, int requirements)
- Similar to :cfunc:`PyArray_FromAny` except the data-type is
- specified using a typenumber. :cfunc:`PyArray_DescrFromType`
- (*typenum*) is passed directly to :cfunc:`PyArray_FromAny`. This
- macro also adds :cdata:`NPY_DEFAULT` to requirements if
- :cdata:`NPY_ARRAY_ENSURECOPY` is passed in as requirements.
+ Similar to :c:func:`PyArray_FromAny` except the data-type is
+ specified using a typenumber. :c:func:`PyArray_DescrFromType`
+ (*typenum*) is passed directly to :c:func:`PyArray_FromAny`. This
+ macro also adds :c:data:`NPY_DEFAULT` to requirements if
+ :c:data:`NPY_ARRAY_ENSURECOPY` is passed in as requirements.
-.. cfunction:: PyObject *PyArray_CheckAxis(PyObject* obj, int* axis, int requirements)
+.. c:function:: PyObject *PyArray_CheckAxis(PyObject* obj, int* axis, int requirements)
Encapsulate the functionality of functions and methods that take
the axis= keyword and work properly with None as the axis
@@ -761,25 +761,25 @@ Dealing with types
General check of Python Type
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-.. cfunction:: PyArray_Check(op)
+.. c:function:: PyArray_Check(op)
Evaluates true if *op* is a Python object whose type is a sub-type
- of :cdata:`PyArray_Type`.
+ of :c:data:`PyArray_Type`.
-.. cfunction:: PyArray_CheckExact(op)
+.. c:function:: PyArray_CheckExact(op)
Evaluates true if *op* is a Python object with type
- :cdata:`PyArray_Type`.
+ :c:data:`PyArray_Type`.
-.. cfunction:: PyArray_HasArrayInterface(op, out)
+.. c:function:: PyArray_HasArrayInterface(op, out)
If ``op`` implements any part of the array interface, then ``out``
will contain a new reference to the newly created ndarray using
the interface or ``out`` will contain ``NULL`` if an error during
conversion occurs. Otherwise, out will contain a borrowed
- reference to :cdata:`Py_NotImplemented` and no error condition is set.
+ reference to :c:data:`Py_NotImplemented` and no error condition is set.
-.. cfunction:: PyArray_HasArrayInterfaceType(op, type, context, out)
+.. c:function:: PyArray_HasArrayInterfaceType(op, type, context, out)
If ``op`` implements any part of the array interface, then ``out``
will contain a new reference to the newly created ndarray using
@@ -789,43 +789,43 @@ General check of Python Type
This version allows setting of the type and context in the part of
the array interface that looks for the :obj:`__array__` attribute.
-.. cfunction:: PyArray_IsZeroDim(op)
+.. c:function:: PyArray_IsZeroDim(op)
Evaluates true if *op* is an instance of (a subclass of)
- :cdata:`PyArray_Type` and has 0 dimensions.
+ :c:data:`PyArray_Type` and has 0 dimensions.
-.. cfunction:: PyArray_IsScalar(op, cls)
+.. c:function:: PyArray_IsScalar(op, cls)
- Evaluates true if *op* is an instance of :cdata:`Py{cls}ArrType_Type`.
+ Evaluates true if *op* is an instance of :c:data:`Py{cls}ArrType_Type`.
-.. cfunction:: PyArray_CheckScalar(op)
+.. c:function:: PyArray_CheckScalar(op)
Evaluates true if *op* is either an array scalar (an instance of a
- sub-type of :cdata:`PyGenericArr_Type` ), or an instance of (a
- sub-class of) :cdata:`PyArray_Type` whose dimensionality is 0.
+ sub-type of :c:data:`PyGenericArr_Type` ), or an instance of (a
+ sub-class of) :c:data:`PyArray_Type` whose dimensionality is 0.
-.. cfunction:: PyArray_IsPythonNumber(op)
+.. c:function:: PyArray_IsPythonNumber(op)
Evaluates true if *op* is an instance of a builtin numeric type (int,
float, complex, long, bool)
-.. cfunction:: PyArray_IsPythonScalar(op)
+.. c:function:: PyArray_IsPythonScalar(op)
Evaluates true if *op* is a builtin Python scalar object (int,
float, complex, str, unicode, long, bool).
-.. cfunction:: PyArray_IsAnyScalar(op)
+.. c:function:: PyArray_IsAnyScalar(op)
Evaluates true if *op* is either a Python scalar object (see
- :cfunc:`PyArray_IsPythonScalar`) or an array scalar (an instance of a sub-
- type of :cdata:`PyGenericArr_Type` ).
+ :c:func:`PyArray_IsPythonScalar`) or an array scalar (an instance of a sub-
+ type of :c:data:`PyGenericArr_Type` ).
-.. cfunction:: PyArray_CheckAnyScalar(op)
+.. c:function:: PyArray_CheckAnyScalar(op)
Evaluates true if *op* is a Python scalar object (see
- :cfunc:`PyArray_IsPythonScalar`), an array scalar (an instance of a
- sub-type of :cdata:`PyGenericArr_Type`) or an instance of a sub-type of
- :cdata:`PyArray_Type` whose dimensionality is 0.
+ :c:func:`PyArray_IsPythonScalar`), an array scalar (an instance of a
+ sub-type of :c:data:`PyGenericArr_Type`) or an instance of a sub-type of
+ :c:data:`PyArray_Type` whose dimensionality is 0.
Data-type checking
@@ -833,179 +833,179 @@ Data-type checking
For the typenum macros, the argument is an integer representing an
enumerated array data type. For the array type checking macros the
-argument must be a :ctype:`PyObject *` that can be directly interpreted as a
-:ctype:`PyArrayObject *`.
+argument must be a :c:type:`PyObject *` that can be directly interpreted as a
+:c:type:`PyArrayObject *`.
-.. cfunction:: PyTypeNum_ISUNSIGNED(num)
+.. c:function:: PyTypeNum_ISUNSIGNED(num)
-.. cfunction:: PyDataType_ISUNSIGNED(descr)
+.. c:function:: PyDataType_ISUNSIGNED(descr)
-.. cfunction:: PyArray_ISUNSIGNED(obj)
+.. c:function:: PyArray_ISUNSIGNED(obj)
Type represents an unsigned integer.
-.. cfunction:: PyTypeNum_ISSIGNED(num)
+.. c:function:: PyTypeNum_ISSIGNED(num)
-.. cfunction:: PyDataType_ISSIGNED(descr)
+.. c:function:: PyDataType_ISSIGNED(descr)
-.. cfunction:: PyArray_ISSIGNED(obj)
+.. c:function:: PyArray_ISSIGNED(obj)
Type represents a signed integer.
-.. cfunction:: PyTypeNum_ISINTEGER(num)
+.. c:function:: PyTypeNum_ISINTEGER(num)
-.. cfunction:: PyDataType_ISINTEGER(descr)
+.. c:function:: PyDataType_ISINTEGER(descr)
-.. cfunction:: PyArray_ISINTEGER(obj)
+.. c:function:: PyArray_ISINTEGER(obj)
Type represents any integer.
-.. cfunction:: PyTypeNum_ISFLOAT(num)
+.. c:function:: PyTypeNum_ISFLOAT(num)
-.. cfunction:: PyDataType_ISFLOAT(descr)
+.. c:function:: PyDataType_ISFLOAT(descr)
-.. cfunction:: PyArray_ISFLOAT(obj)
+.. c:function:: PyArray_ISFLOAT(obj)
Type represents any floating point number.
-.. cfunction:: PyTypeNum_ISCOMPLEX(num)
+.. c:function:: PyTypeNum_ISCOMPLEX(num)
-.. cfunction:: PyDataType_ISCOMPLEX(descr)
+.. c:function:: PyDataType_ISCOMPLEX(descr)
-.. cfunction:: PyArray_ISCOMPLEX(obj)
+.. c:function:: PyArray_ISCOMPLEX(obj)
Type represents any complex floating point number.
-.. cfunction:: PyTypeNum_ISNUMBER(num)
+.. c:function:: PyTypeNum_ISNUMBER(num)
-.. cfunction:: PyDataType_ISNUMBER(descr)
+.. c:function:: PyDataType_ISNUMBER(descr)
-.. cfunction:: PyArray_ISNUMBER(obj)
+.. c:function:: PyArray_ISNUMBER(obj)
Type represents any integer, floating point, or complex floating point
number.
-.. cfunction:: PyTypeNum_ISSTRING(num)
+.. c:function:: PyTypeNum_ISSTRING(num)
-.. cfunction:: PyDataType_ISSTRING(descr)
+.. c:function:: PyDataType_ISSTRING(descr)
-.. cfunction:: PyArray_ISSTRING(obj)
+.. c:function:: PyArray_ISSTRING(obj)
Type represents a string data type.
-.. cfunction:: PyTypeNum_ISPYTHON(num)
+.. c:function:: PyTypeNum_ISPYTHON(num)
-.. cfunction:: PyDataType_ISPYTHON(descr)
+.. c:function:: PyDataType_ISPYTHON(descr)
-.. cfunction:: PyArray_ISPYTHON(obj)
+.. c:function:: PyArray_ISPYTHON(obj)
Type represents an enumerated type corresponding to one of the
standard Python scalar (bool, int, float, or complex).
-.. cfunction:: PyTypeNum_ISFLEXIBLE(num)
+.. c:function:: PyTypeNum_ISFLEXIBLE(num)
-.. cfunction:: PyDataType_ISFLEXIBLE(descr)
+.. c:function:: PyDataType_ISFLEXIBLE(descr)
-.. cfunction:: PyArray_ISFLEXIBLE(obj)
+.. c:function:: PyArray_ISFLEXIBLE(obj)
- Type represents one of the flexible array types ( :cdata:`NPY_STRING`,
- :cdata:`NPY_UNICODE`, or :cdata:`NPY_VOID` ).
+ Type represents one of the flexible array types ( :c:data:`NPY_STRING`,
+ :c:data:`NPY_UNICODE`, or :c:data:`NPY_VOID` ).
-.. cfunction:: PyTypeNum_ISUSERDEF(num)
+.. c:function:: PyTypeNum_ISUSERDEF(num)
-.. cfunction:: PyDataType_ISUSERDEF(descr)
+.. c:function:: PyDataType_ISUSERDEF(descr)
-.. cfunction:: PyArray_ISUSERDEF(obj)
+.. c:function:: PyArray_ISUSERDEF(obj)
Type represents a user-defined type.
-.. cfunction:: PyTypeNum_ISEXTENDED(num)
+.. c:function:: PyTypeNum_ISEXTENDED(num)
-.. cfunction:: PyDataType_ISEXTENDED(descr)
+.. c:function:: PyDataType_ISEXTENDED(descr)
-.. cfunction:: PyArray_ISEXTENDED(obj)
+.. c:function:: PyArray_ISEXTENDED(obj)
Type is either flexible or user-defined.
-.. cfunction:: PyTypeNum_ISOBJECT(num)
+.. c:function:: PyTypeNum_ISOBJECT(num)
-.. cfunction:: PyDataType_ISOBJECT(descr)
+.. c:function:: PyDataType_ISOBJECT(descr)
-.. cfunction:: PyArray_ISOBJECT(obj)
+.. c:function:: PyArray_ISOBJECT(obj)
Type represents object data type.
-.. cfunction:: PyTypeNum_ISBOOL(num)
+.. c:function:: PyTypeNum_ISBOOL(num)
-.. cfunction:: PyDataType_ISBOOL(descr)
+.. c:function:: PyDataType_ISBOOL(descr)
-.. cfunction:: PyArray_ISBOOL(obj)
+.. c:function:: PyArray_ISBOOL(obj)
Type represents Boolean data type.
-.. cfunction:: PyDataType_HASFIELDS(descr)
+.. c:function:: PyDataType_HASFIELDS(descr)
-.. cfunction:: PyArray_HASFIELDS(obj)
+.. c:function:: PyArray_HASFIELDS(obj)
Type has fields associated with it.
-.. cfunction:: PyArray_ISNOTSWAPPED(m)
+.. c:function:: PyArray_ISNOTSWAPPED(m)
Evaluates true if the data area of the ndarray *m* is in machine
byte-order according to the array's data-type descriptor.
-.. cfunction:: PyArray_ISBYTESWAPPED(m)
+.. c:function:: PyArray_ISBYTESWAPPED(m)
Evaluates true if the data area of the ndarray *m* is **not** in
machine byte-order according to the array's data-type descriptor.
-.. cfunction:: Bool PyArray_EquivTypes(PyArray_Descr* type1, PyArray_Descr* type2)
+.. c:function:: Bool PyArray_EquivTypes(PyArray_Descr* type1, PyArray_Descr* type2)
- Return :cdata:`NPY_TRUE` if *type1* and *type2* actually represent
+ Return :c:data:`NPY_TRUE` if *type1* and *type2* actually represent
equivalent types for this platform (the fortran member of each
type is ignored). For example, on 32-bit platforms,
- :cdata:`NPY_LONG` and :cdata:`NPY_INT` are equivalent. Otherwise
- return :cdata:`NPY_FALSE`.
+ :c:data:`NPY_LONG` and :c:data:`NPY_INT` are equivalent. Otherwise
+ return :c:data:`NPY_FALSE`.
-.. cfunction:: Bool PyArray_EquivArrTypes(PyArrayObject* a1, PyArrayObject * a2)
+.. c:function:: Bool PyArray_EquivArrTypes(PyArrayObject* a1, PyArrayObject * a2)
- Return :cdata:`NPY_TRUE` if *a1* and *a2* are arrays with equivalent
+ Return :c:data:`NPY_TRUE` if *a1* and *a2* are arrays with equivalent
types for this platform.
-.. cfunction:: Bool PyArray_EquivTypenums(int typenum1, int typenum2)
+.. c:function:: Bool PyArray_EquivTypenums(int typenum1, int typenum2)
- Special case of :cfunc:`PyArray_EquivTypes` (...) that does not accept
+ Special case of :c:func:`PyArray_EquivTypes` (...) that does not accept
flexible data types but may be easier to call.
-.. cfunction:: int PyArray_EquivByteorders({byteorder} b1, {byteorder} b2)
+.. c:function:: int PyArray_EquivByteorders({byteorder} b1, {byteorder} b2)
- True if byteorder characters ( :cdata:`NPY_LITTLE`,
- :cdata:`NPY_BIG`, :cdata:`NPY_NATIVE`, :cdata:`NPY_IGNORE` ) are
+ True if byteorder characters ( :c:data:`NPY_LITTLE`,
+ :c:data:`NPY_BIG`, :c:data:`NPY_NATIVE`, :c:data:`NPY_IGNORE` ) are
either equal or equivalent as to their specification of a native
- byte order. Thus, on a little-endian machine :cdata:`NPY_LITTLE`
- and :cdata:`NPY_NATIVE` are equivalent where they are not
+ byte order. Thus, on a little-endian machine :c:data:`NPY_LITTLE`
+ and :c:data:`NPY_NATIVE` are equivalent where they are not
equivalent on a big-endian machine.
Converting data types
^^^^^^^^^^^^^^^^^^^^^
-.. cfunction:: PyObject* PyArray_Cast(PyArrayObject* arr, int typenum)
+.. c:function:: PyObject* PyArray_Cast(PyArrayObject* arr, int typenum)
Mainly for backwards compatibility to the Numeric C-API and for
simple casts to non-flexible types. Return a new array object with
the elements of *arr* cast to the data-type *typenum* which must
be one of the enumerated types and not a flexible type.
-.. cfunction:: PyObject* PyArray_CastToType(PyArrayObject* arr, PyArray_Descr* type, int fortran)
+.. c:function:: PyObject* PyArray_CastToType(PyArrayObject* arr, PyArray_Descr* type, int fortran)
Return a new array of the *type* specified, casting the elements
of *arr* as appropriate. The fortran argument specifies the
ordering of the output array.
-.. cfunction:: int PyArray_CastTo(PyArrayObject* out, PyArrayObject* in)
+.. c:function:: int PyArray_CastTo(PyArrayObject* out, PyArrayObject* in)
- As of 1.6, this function simply calls :cfunc:`PyArray_CopyInto`,
+ As of 1.6, this function simply calls :c:func:`PyArray_CopyInto`,
which handles the casting.
Cast the elements of the array *in* into the array *out*. The
@@ -1014,7 +1014,7 @@ Converting data types
placed in out), and have a data type that is one of the builtin
types. Returns 0 on success and -1 if an error occurs.
-.. cfunction:: PyArray_VectorUnaryFunc* PyArray_GetCastFunc(PyArray_Descr* from, int totype)
+.. c:function:: PyArray_VectorUnaryFunc* PyArray_GetCastFunc(PyArray_Descr* from, int totype)
Return the low-level casting function to cast from the given
descriptor to the builtin type number. If no casting function
@@ -1023,7 +1023,7 @@ Converting data types
any user-defined casting functions added to a descriptors casting
dictionary.
-.. cfunction:: int PyArray_CanCastSafely(int fromtype, int totype)
+.. c:function:: int PyArray_CanCastSafely(int fromtype, int totype)
Returns non-zero if an array of data type *fromtype* can be cast
to an array of data type *totype* without losing information. An
@@ -1033,29 +1033,29 @@ Converting data types
explict requests. Flexible array types are not checked according
to their lengths with this function.
-.. cfunction:: int PyArray_CanCastTo(PyArray_Descr* fromtype, PyArray_Descr* totype)
+.. c:function:: int PyArray_CanCastTo(PyArray_Descr* fromtype, PyArray_Descr* totype)
- :cfunc:`PyArray_CanCastTypeTo` supercedes this function in
+ :c:func:`PyArray_CanCastTypeTo` supercedes this function in
NumPy 1.6 and later.
Equivalent to PyArray_CanCastTypeTo(fromtype, totype, NPY_SAFE_CASTING).
-.. cfunction:: int PyArray_CanCastTypeTo(PyArray_Descr* fromtype, PyArray_Descr* totype, NPY_CASTING casting)
+.. c:function:: int PyArray_CanCastTypeTo(PyArray_Descr* fromtype, PyArray_Descr* totype, NPY_CASTING casting)
.. versionadded:: 1.6
Returns non-zero if an array of data type *fromtype* (which can
include flexible types) can be cast safely to an array of data
type *totype* (which can include flexible types) according to
- the casting rule *casting*. For simple types with :cdata:`NPY_SAFE_CASTING`,
- this is basically a wrapper around :cfunc:`PyArray_CanCastSafely`, but
+ the casting rule *casting*. For simple types with :c:data:`NPY_SAFE_CASTING`,
+ this is basically a wrapper around :c:func:`PyArray_CanCastSafely`, but
for flexible types such as strings or unicode, it produces results
taking into account their sizes. Integer and float types can only be cast
- to a string or unicode type using :cdata:`NPY_SAFE_CASTING` if the string
+ to a string or unicode type using :c:data:`NPY_SAFE_CASTING` if the string
or unicode type is big enough to hold the max value of the integer/float
type being cast from.
-.. cfunction:: int PyArray_CanCastArrayTo(PyArrayObject* arr, PyArray_Descr* totype, NPY_CASTING casting)
+.. c:function:: int PyArray_CanCastArrayTo(PyArrayObject* arr, PyArray_Descr* totype, NPY_CASTING casting)
.. versionadded:: 1.6
@@ -1071,7 +1071,7 @@ Converting data types
of uint values is not a subset of the int values for types with the
same number of bits.
-.. cfunction:: PyArray_Descr* PyArray_MinScalarType(PyArrayObject* arr)
+.. c:function:: PyArray_Descr* PyArray_MinScalarType(PyArrayObject* arr)
.. versionadded:: 1.6
@@ -1084,7 +1084,7 @@ Converting data types
boolean, but will demote a signed integer to an unsigned integer
when the scalar value is positive.
-.. cfunction:: PyArray_Descr* PyArray_PromoteTypes(PyArray_Descr* type1, PyArray_Descr* type2)
+.. c:function:: PyArray_Descr* PyArray_PromoteTypes(PyArray_Descr* type1, PyArray_Descr* type2)
.. versionadded:: 1.6
@@ -1093,7 +1093,7 @@ Converting data types
associative. A string or unicode result will be the proper size for
storing the max value of the input types converted to a string or unicode.
-.. cfunction:: PyArray_Descr* PyArray_ResultType(npy_intp narrs, PyArrayObject**arrs, npy_intp ndtypes, PyArray_Descr**dtypes)
+.. c:function:: PyArray_Descr* PyArray_ResultType(npy_intp narrs, PyArrayObject**arrs, npy_intp ndtypes, PyArray_Descr**dtypes)
.. versionadded:: 1.6
@@ -1109,22 +1109,22 @@ Converting data types
If there are only scalars or the maximum category of the scalars
is higher than the maximum category of the arrays,
- the data types are combined with :cfunc:`PyArray_PromoteTypes`
+ the data types are combined with :c:func:`PyArray_PromoteTypes`
to produce the return value.
Otherwise, PyArray_MinScalarType is called on each array, and
the resulting data types are all combined with
- :cfunc:`PyArray_PromoteTypes` to produce the return value.
+ :c:func:`PyArray_PromoteTypes` to produce the return value.
The set of int values is not a subset of the uint values for types
with the same number of bits, something not reflected in
- :cfunc:`PyArray_MinScalarType`, but handled as a special case in
+ :c:func:`PyArray_MinScalarType`, but handled as a special case in
PyArray_ResultType.
-.. cfunction:: int PyArray_ObjectType(PyObject* op, int mintype)
+.. c:function:: int PyArray_ObjectType(PyObject* op, int mintype)
- This function is superceded by :cfunc:`PyArray_MinScalarType` and/or
- :cfunc:`PyArray_ResultType`.
+ This function is superceded by :c:func:`PyArray_MinScalarType` and/or
+ :c:func:`PyArray_ResultType`.
This function is useful for determining a common type that two or
more arrays can be converted to. It only works for non-flexible
@@ -1134,21 +1134,21 @@ Converting data types
return value is the enumerated typenumber that represents the
data-type that *op* should have.
-.. cfunction:: void PyArray_ArrayType(PyObject* op, PyArray_Descr* mintype, PyArray_Descr* outtype)
+.. c:function:: void PyArray_ArrayType(PyObject* op, PyArray_Descr* mintype, PyArray_Descr* outtype)
- This function is superceded by :cfunc:`PyArray_ResultType`.
+ This function is superceded by :c:func:`PyArray_ResultType`.
- This function works similarly to :cfunc:`PyArray_ObjectType` (...)
+ This function works similarly to :c:func:`PyArray_ObjectType` (...)
except it handles flexible arrays. The *mintype* argument can have
an itemsize member and the *outtype* argument will have an
itemsize member at least as big but perhaps bigger depending on
the object *op*.
-.. cfunction:: PyArrayObject** PyArray_ConvertToCommonType(PyObject* op, int* n)
+.. c:function:: PyArrayObject** PyArray_ConvertToCommonType(PyObject* op, int* n)
The functionality this provides is largely superceded by iterator
- :ctype:`NpyIter` introduced in 1.6, with flag
- :cdata:`NPY_ITER_COMMON_DTYPE` or with the same dtype parameter for
+ :c:type:`NpyIter` introduced in 1.6, with flag
+ :c:data:`NPY_ITER_COMMON_DTYPE` or with the same dtype parameter for
all operands.
Convert a sequence of Python objects contained in *op* to an array
@@ -1156,9 +1156,9 @@ Converting data types
based on the typenumber (larger type number is chosen over a
smaller one) ignoring objects that are only scalars. The length of
the sequence is returned in *n*, and an *n* -length array of
- :ctype:`PyArrayObject` pointers is the return value (or ``NULL`` if an
+ :c:type:`PyArrayObject` pointers is the return value (or ``NULL`` if an
error occurs). The returned array must be freed by the caller of
- this routine (using :cfunc:`PyDataMem_FREE` ) and all the array objects
+ this routine (using :c:func:`PyDataMem_FREE` ) and all the array objects
in it ``DECREF`` 'd or a memory-leak will occur. The example
template-code below shows a typically usage:
@@ -1172,35 +1172,35 @@ Converting data types
PyDataMem_FREE(mps);
{return}
-.. cfunction:: char* PyArray_Zero(PyArrayObject* arr)
+.. c:function:: char* PyArray_Zero(PyArrayObject* arr)
A pointer to newly created memory of size *arr* ->itemsize that
holds the representation of 0 for that type. The returned pointer,
- *ret*, **must be freed** using :cfunc:`PyDataMem_FREE` (ret) when it is
+ *ret*, **must be freed** using :c:func:`PyDataMem_FREE` (ret) when it is
not needed anymore.
-.. cfunction:: char* PyArray_One(PyArrayObject* arr)
+.. c:function:: char* PyArray_One(PyArrayObject* arr)
A pointer to newly created memory of size *arr* ->itemsize that
holds the representation of 1 for that type. The returned pointer,
- *ret*, **must be freed** using :cfunc:`PyDataMem_FREE` (ret) when it
+ *ret*, **must be freed** using :c:func:`PyDataMem_FREE` (ret) when it
is not needed anymore.
-.. cfunction:: int PyArray_ValidType(int typenum)
+.. c:function:: int PyArray_ValidType(int typenum)
- Returns :cdata:`NPY_TRUE` if *typenum* represents a valid type-number
+ Returns :c:data:`NPY_TRUE` if *typenum* represents a valid type-number
(builtin or user-defined or character code). Otherwise, this
- function returns :cdata:`NPY_FALSE`.
+ function returns :c:data:`NPY_FALSE`.
New data types
^^^^^^^^^^^^^^
-.. cfunction:: void PyArray_InitArrFuncs(PyArray_ArrFuncs* f)
+.. c:function:: void PyArray_InitArrFuncs(PyArray_ArrFuncs* f)
Initialize all function pointers and members to ``NULL``.
-.. cfunction:: int PyArray_RegisterDataType(PyArray_Descr* dtype)
+.. c:function:: int PyArray_RegisterDataType(PyArray_Descr* dtype)
Register a data-type as a new user-defined data type for
arrays. The type must have most of its entries filled in. This is
@@ -1216,23 +1216,23 @@ New data types
A user-defined type number is returned that uniquely identifies
the type. A pointer to the new structure can then be obtained from
- :cfunc:`PyArray_DescrFromType` using the returned type number. A -1 is
+ :c:func:`PyArray_DescrFromType` using the returned type number. A -1 is
returned if an error occurs. If this *dtype* has already been
registered (checked only by the address of the pointer), then
return the previously-assigned type-number.
-.. cfunction:: int PyArray_RegisterCastFunc(PyArray_Descr* descr, int totype, PyArray_VectorUnaryFunc* castfunc)
+.. c:function:: int PyArray_RegisterCastFunc(PyArray_Descr* descr, int totype, PyArray_VectorUnaryFunc* castfunc)
Register a low-level casting function, *castfunc*, to convert
from the data-type, *descr*, to the given data-type number,
*totype*. Any old casting function is over-written. A ``0`` is
returned on success or a ``-1`` on failure.
-.. cfunction:: int PyArray_RegisterCanCast(PyArray_Descr* descr, int totype, NPY_SCALARKIND scalar)
+.. c:function:: int PyArray_RegisterCanCast(PyArray_Descr* descr, int totype, NPY_SCALARKIND scalar)
Register the data-type number, *totype*, as castable from
data-type object, *descr*, of the given *scalar* kind. Use
- *scalar* = :cdata:`NPY_NOSCALAR` to register that an array of data-type
+ *scalar* = :c:data:`NPY_NOSCALAR` to register that an array of data-type
*descr* can be cast safely to a data-type whose type_number is
*totype*.
@@ -1240,14 +1240,14 @@ New data types
Special functions for NPY_OBJECT
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-.. cfunction:: int PyArray_INCREF(PyArrayObject* op)
+.. c:function:: int PyArray_INCREF(PyArrayObject* op)
Used for an array, *op*, that contains any Python objects. It
increments the reference count of every object in the array
according to the data-type of *op*. A -1 is returned if an error
occurs, otherwise 0 is returned.
-.. cfunction:: void PyArray_Item_INCREF(char* ptr, PyArray_Descr* dtype)
+.. c:function:: void PyArray_Item_INCREF(char* ptr, PyArray_Descr* dtype)
A function to INCREF all the objects at the location *ptr*
according to the data-type *dtype*. If *ptr* is the start of a
@@ -1255,14 +1255,14 @@ Special functions for NPY_OBJECT
increment the reference count of all object-like items in the
structured type.
-.. cfunction:: int PyArray_XDECREF(PyArrayObject* op)
+.. c:function:: int PyArray_XDECREF(PyArrayObject* op)
Used for an array, *op*, that contains any Python objects. It
decrements the reference count of every object in the array
according to the data-type of *op*. Normal return value is 0. A
-1 is returned if an error occurs.
-.. cfunction:: void PyArray_Item_XDECREF(char* ptr, PyArray_Descr* dtype)
+.. c:function:: void PyArray_Item_XDECREF(char* ptr, PyArray_Descr* dtype)
A function to XDECREF all the object-like items at the location
*ptr* as recorded in the data-type, *dtype*. This works
@@ -1270,13 +1270,13 @@ Special functions for NPY_OBJECT
that contain object-like items, all the object-like fields will be
XDECREF ``'d``.
-.. cfunction:: void PyArray_FillObjectArray(PyArrayObject* arr, PyObject* obj)
+.. c:function:: void PyArray_FillObjectArray(PyArrayObject* arr, PyObject* obj)
Fill a newly created array with a single value obj at all
locations in the structure with object data-types. No checking is
- performed but *arr* must be of data-type :ctype:`NPY_OBJECT` and be
+ performed but *arr* must be of data-type :c:type:`NPY_OBJECT` and be
single-segment and uninitialized (no previous objects in
- position). Use :cfunc:`PyArray_DECREF` (*arr*) if you need to
+ position). Use :c:func:`PyArray_DECREF` (*arr*) if you need to
decrement all the items in the object array prior to calling this
function.
@@ -1298,8 +1298,8 @@ getting (and, if appropriate, setting) these flags.
Memory areas of all kinds can be pointed to by an ndarray, necessitating
these flags. If you get an arbitrary ``PyArrayObject`` in C-code, you
need to be aware of the flags that are set. If you need to guarantee
-a certain kind of array (like :cdata:`NPY_ARRAY_C_CONTIGUOUS` and
-:cdata:`NPY_ARRAY_BEHAVED`), then pass these requirements into the
+a certain kind of array (like :c:data:`NPY_ARRAY_C_CONTIGUOUS` and
+:c:data:`NPY_ARRAY_BEHAVED`), then pass these requirements into the
PyArray_FromAny function.
@@ -1318,12 +1318,12 @@ In versions 1.6 and earlier of NumPy, the following flags
did not have the _ARRAY_ macro namespace in them. That form
of the constant names is deprecated in 1.7.
-.. cvar:: NPY_ARRAY_C_CONTIGUOUS
+.. c:var:: NPY_ARRAY_C_CONTIGUOUS
The data area is in C-style contiguous order (last index varies the
fastest).
-.. cvar:: NPY_ARRAY_F_CONTIGUOUS
+.. c:var:: NPY_ARRAY_F_CONTIGUOUS
The data area is in Fortran-style contiguous order (first index varies
the fastest).
@@ -1344,184 +1344,184 @@ of the constant names is deprecated in 1.7.
.. seealso:: :ref:`Internal memory layout of an ndarray <arrays.ndarray>`
-.. cvar:: NPY_ARRAY_OWNDATA
+.. c:var:: NPY_ARRAY_OWNDATA
The data area is owned by this array.
-.. cvar:: NPY_ARRAY_ALIGNED
+.. c:var:: NPY_ARRAY_ALIGNED
The data area and all array elements are aligned appropriately.
-.. cvar:: NPY_ARRAY_WRITEABLE
+.. c:var:: NPY_ARRAY_WRITEABLE
The data area can be written to.
Notice that the above 3 flags are are defined so that a new, well-
behaved array has these flags defined as true.
-.. cvar:: NPY_ARRAY_UPDATEIFCOPY
+.. c:var:: NPY_ARRAY_UPDATEIFCOPY
The data area represents a (well-behaved) copy whose information
should be transferred back to the original when this array is deleted.
This is a special flag that is set if this array represents a copy
made because a user required certain flags in
- :cfunc:`PyArray_FromAny` and a copy had to be made of some other
+ :c:func:`PyArray_FromAny` and a copy had to be made of some other
array (and the user asked for this flag to be set in such a
situation). The base attribute then points to the "misbehaved"
array (which is set read_only). When the array with this flag set
is deallocated, it will copy its contents back to the "misbehaved"
array (casting if necessary) and will reset the "misbehaved" array
- to :cdata:`NPY_ARRAY_WRITEABLE`. If the "misbehaved" array was not
- :cdata:`NPY_ARRAY_WRITEABLE` to begin with then :cfunc:`PyArray_FromAny`
- would have returned an error because :cdata:`NPY_ARRAY_UPDATEIFCOPY`
+ to :c:data:`NPY_ARRAY_WRITEABLE`. If the "misbehaved" array was not
+ :c:data:`NPY_ARRAY_WRITEABLE` to begin with then :c:func:`PyArray_FromAny`
+ would have returned an error because :c:data:`NPY_ARRAY_UPDATEIFCOPY`
would not have been possible.
-:cfunc:`PyArray_UpdateFlags` (obj, flags) will update the ``obj->flags``
-for ``flags`` which can be any of :cdata:`NPY_ARRAY_C_CONTIGUOUS`,
-:cdata:`NPY_ARRAY_F_CONTIGUOUS`, :cdata:`NPY_ARRAY_ALIGNED`, or
-:cdata:`NPY_ARRAY_WRITEABLE`.
+:c:func:`PyArray_UpdateFlags` (obj, flags) will update the ``obj->flags``
+for ``flags`` which can be any of :c:data:`NPY_ARRAY_C_CONTIGUOUS`,
+:c:data:`NPY_ARRAY_F_CONTIGUOUS`, :c:data:`NPY_ARRAY_ALIGNED`, or
+:c:data:`NPY_ARRAY_WRITEABLE`.
Combinations of array flags
^^^^^^^^^^^^^^^^^^^^^^^^^^^
-.. cvar:: NPY_ARRAY_BEHAVED
+.. c:var:: NPY_ARRAY_BEHAVED
- :cdata:`NPY_ARRAY_ALIGNED` \| :cdata:`NPY_ARRAY_WRITEABLE`
+ :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_WRITEABLE`
-.. cvar:: NPY_ARRAY_CARRAY
+.. c:var:: NPY_ARRAY_CARRAY
- :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_BEHAVED`
+ :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_BEHAVED`
-.. cvar:: NPY_ARRAY_CARRAY_RO
+.. c:var:: NPY_ARRAY_CARRAY_RO
- :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_ALIGNED`
+ :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED`
-.. cvar:: NPY_ARRAY_FARRAY
+.. c:var:: NPY_ARRAY_FARRAY
- :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_BEHAVED`
+ :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_BEHAVED`
-.. cvar:: NPY_ARRAY_FARRAY_RO
+.. c:var:: NPY_ARRAY_FARRAY_RO
- :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_ALIGNED`
+ :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED`
-.. cvar:: NPY_ARRAY_DEFAULT
+.. c:var:: NPY_ARRAY_DEFAULT
- :cdata:`NPY_ARRAY_CARRAY`
+ :c:data:`NPY_ARRAY_CARRAY`
-.. cvar:: NPY_ARRAY_UPDATE_ALL
+.. c:var:: NPY_ARRAY_UPDATE_ALL
- :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_ALIGNED`
+ :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED`
Flag-like constants
^^^^^^^^^^^^^^^^^^^
-These constants are used in :cfunc:`PyArray_FromAny` (and its macro forms) to
+These constants are used in :c:func:`PyArray_FromAny` (and its macro forms) to
specify desired properties of the new array.
-.. cvar:: NPY_ARRAY_FORCECAST
+.. c:var:: NPY_ARRAY_FORCECAST
Cast to the desired type, even if it can't be done without losing
information.
-.. cvar:: NPY_ARRAY_ENSURECOPY
+.. c:var:: NPY_ARRAY_ENSURECOPY
Make sure the resulting array is a copy of the original.
-.. cvar:: NPY_ARRAY_ENSUREARRAY
+.. c:var:: NPY_ARRAY_ENSUREARRAY
Make sure the resulting object is an actual ndarray (or bigndarray),
and not a sub-class.
-.. cvar:: NPY_ARRAY_NOTSWAPPED
+.. c:var:: NPY_ARRAY_NOTSWAPPED
- Only used in :cfunc:`PyArray_CheckFromAny` to over-ride the byteorder
+ Only used in :c:func:`PyArray_CheckFromAny` to over-ride the byteorder
of the data-type object passed in.
-.. cvar:: NPY_ARRAY_BEHAVED_NS
+.. c:var:: NPY_ARRAY_BEHAVED_NS
- :cdata:`NPY_ARRAY_ALIGNED` \| :cdata:`NPY_ARRAY_WRITEABLE` \| :cdata:`NPY_ARRAY_NOTSWAPPED`
+ :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_WRITEABLE` \| :c:data:`NPY_ARRAY_NOTSWAPPED`
Flag checking
^^^^^^^^^^^^^
For all of these macros *arr* must be an instance of a (subclass of)
-:cdata:`PyArray_Type`, but no checking is done.
+:c:data:`PyArray_Type`, but no checking is done.
-.. cfunction:: PyArray_CHKFLAGS(arr, flags)
+.. c:function:: PyArray_CHKFLAGS(arr, flags)
The first parameter, arr, must be an ndarray or subclass. The
parameter, *flags*, should be an integer consisting of bitwise
combinations of the possible flags an array can have:
- :cdata:`NPY_ARRAY_C_CONTIGUOUS`, :cdata:`NPY_ARRAY_F_CONTIGUOUS`,
- :cdata:`NPY_ARRAY_OWNDATA`, :cdata:`NPY_ARRAY_ALIGNED`,
- :cdata:`NPY_ARRAY_WRITEABLE`, :cdata:`NPY_ARRAY_UPDATEIFCOPY`.
+ :c:data:`NPY_ARRAY_C_CONTIGUOUS`, :c:data:`NPY_ARRAY_F_CONTIGUOUS`,
+ :c:data:`NPY_ARRAY_OWNDATA`, :c:data:`NPY_ARRAY_ALIGNED`,
+ :c:data:`NPY_ARRAY_WRITEABLE`, :c:data:`NPY_ARRAY_UPDATEIFCOPY`.
-.. cfunction:: PyArray_IS_C_CONTIGUOUS(arr)
+.. c:function:: PyArray_IS_C_CONTIGUOUS(arr)
Evaluates true if *arr* is C-style contiguous.
-.. cfunction:: PyArray_IS_F_CONTIGUOUS(arr)
+.. c:function:: PyArray_IS_F_CONTIGUOUS(arr)
Evaluates true if *arr* is Fortran-style contiguous.
-.. cfunction:: PyArray_ISFORTRAN(arr)
+.. c:function:: PyArray_ISFORTRAN(arr)
Evaluates true if *arr* is Fortran-style contiguous and *not*
- C-style contiguous. :cfunc:`PyArray_IS_F_CONTIGUOUS`
+ C-style contiguous. :c:func:`PyArray_IS_F_CONTIGUOUS`
is the correct way to test for Fortran-style contiguity.
-.. cfunction:: PyArray_ISWRITEABLE(arr)
+.. c:function:: PyArray_ISWRITEABLE(arr)
Evaluates true if the data area of *arr* can be written to
-.. cfunction:: PyArray_ISALIGNED(arr)
+.. c:function:: PyArray_ISALIGNED(arr)
Evaluates true if the data area of *arr* is properly aligned on
the machine.
-.. cfunction:: PyArray_ISBEHAVED(arr)
+.. c:function:: PyArray_ISBEHAVED(arr)
Evalutes true if the data area of *arr* is aligned and writeable
and in machine byte-order according to its descriptor.
-.. cfunction:: PyArray_ISBEHAVED_RO(arr)
+.. c:function:: PyArray_ISBEHAVED_RO(arr)
Evaluates true if the data area of *arr* is aligned and in machine
byte-order.
-.. cfunction:: PyArray_ISCARRAY(arr)
+.. c:function:: PyArray_ISCARRAY(arr)
Evaluates true if the data area of *arr* is C-style contiguous,
- and :cfunc:`PyArray_ISBEHAVED` (*arr*) is true.
+ and :c:func:`PyArray_ISBEHAVED` (*arr*) is true.
-.. cfunction:: PyArray_ISFARRAY(arr)
+.. c:function:: PyArray_ISFARRAY(arr)
Evaluates true if the data area of *arr* is Fortran-style
- contiguous and :cfunc:`PyArray_ISBEHAVED` (*arr*) is true.
+ contiguous and :c:func:`PyArray_ISBEHAVED` (*arr*) is true.
-.. cfunction:: PyArray_ISCARRAY_RO(arr)
+.. c:function:: PyArray_ISCARRAY_RO(arr)
Evaluates true if the data area of *arr* is C-style contiguous,
aligned, and in machine byte-order.
-.. cfunction:: PyArray_ISFARRAY_RO(arr)
+.. c:function:: PyArray_ISFARRAY_RO(arr)
Evaluates true if the data area of *arr* is Fortran-style
contiguous, aligned, and in machine byte-order **.**
-.. cfunction:: PyArray_ISONESEGMENT(arr)
+.. c:function:: PyArray_ISONESEGMENT(arr)
Evaluates true if the data area of *arr* consists of a single
(C-style or Fortran-style) contiguous segment.
-.. cfunction:: void PyArray_UpdateFlags(PyArrayObject* arr, int flagmask)
+.. c:function:: void PyArray_UpdateFlags(PyArrayObject* arr, int flagmask)
- The :cdata:`NPY_ARRAY_C_CONTIGUOUS`, :cdata:`NPY_ARRAY_ALIGNED`, and
- :cdata:`NPY_ARRAY_F_CONTIGUOUS` array flags can be "calculated" from the
+ The :c:data:`NPY_ARRAY_C_CONTIGUOUS`, :c:data:`NPY_ARRAY_ALIGNED`, and
+ :c:data:`NPY_ARRAY_F_CONTIGUOUS` array flags can be "calculated" from the
array object itself. This routine updates one or more of these
flags of *arr* as specified in *flagmask* by performing the
required calculation.
@@ -1530,7 +1530,7 @@ For all of these macros *arr* must be an instance of a (subclass of)
.. warning::
It is important to keep the flags updated (using
- :cfunc:`PyArray_UpdateFlags` can help) whenever a manipulation with an
+ :c:func:`PyArray_UpdateFlags` can help) whenever a manipulation with an
array is performed that might cause them to change. Later
calculations in NumPy that rely on the state of these flags do not
repeat the calculation to update them.
@@ -1543,7 +1543,7 @@ Array method alternative API
Conversion
^^^^^^^^^^
-.. cfunction:: PyObject* PyArray_GetField(PyArrayObject* self, PyArray_Descr* dtype, int offset)
+.. c:function:: PyObject* PyArray_GetField(PyArrayObject* self, PyArray_Descr* dtype, int offset)
Equivalent to :meth:`ndarray.getfield` (*self*, *dtype*, *offset*). Return
a new array of the given *dtype* using the data in the current
@@ -1555,7 +1555,7 @@ Conversion
be used to select specific bytes or groups of bytes from any array
type.
-.. cfunction:: int PyArray_SetField(PyArrayObject* self, PyArray_Descr* dtype, int offset, PyObject* val)
+.. c:function:: int PyArray_SetField(PyArrayObject* self, PyArray_Descr* dtype, int offset, PyObject* val)
Equivalent to :meth:`ndarray.setfield` (*self*, *val*, *dtype*, *offset*
). Set the field starting at *offset* in bytes and of the given
@@ -1567,35 +1567,35 @@ Conversion
destination must be an integer multiple of the number of elements
in *val*.
-.. cfunction:: PyObject* PyArray_Byteswap(PyArrayObject* self, Bool inplace)
+.. c:function:: PyObject* PyArray_Byteswap(PyArrayObject* self, Bool inplace)
Equivalent to :meth:`ndarray.byteswap` (*self*, *inplace*). Return an array
whose data area is byteswapped. If *inplace* is non-zero, then do
the byteswap inplace and return a reference to self. Otherwise,
create a byteswapped copy and leave self unchanged.
-.. cfunction:: PyObject* PyArray_NewCopy(PyArrayObject* old, NPY_ORDER order)
+.. c:function:: PyObject* PyArray_NewCopy(PyArrayObject* old, NPY_ORDER order)
Equivalent to :meth:`ndarray.copy` (*self*, *fortran*). Make a copy of the
*old* array. The returned array is always aligned and writeable
with data interpreted the same as the old array. If *order* is
- :cdata:`NPY_CORDER`, then a C-style contiguous array is returned. If
- *order* is :cdata:`NPY_FORTRANORDER`, then a Fortran-style contiguous
- array is returned. If *order is* :cdata:`NPY_ANYORDER`, then the array
+ :c:data:`NPY_CORDER`, then a C-style contiguous array is returned. If
+ *order* is :c:data:`NPY_FORTRANORDER`, then a Fortran-style contiguous
+ array is returned. If *order is* :c:data:`NPY_ANYORDER`, then the array
returned is Fortran-style contiguous only if the old one is;
otherwise, it is C-style contiguous.
-.. cfunction:: PyObject* PyArray_ToList(PyArrayObject* self)
+.. c:function:: PyObject* PyArray_ToList(PyArrayObject* self)
Equivalent to :meth:`ndarray.tolist` (*self*). Return a nested Python list
from *self*.
-.. cfunction:: PyObject* PyArray_ToString(PyArrayObject* self, NPY_ORDER order)
+.. c:function:: PyObject* PyArray_ToString(PyArrayObject* self, NPY_ORDER order)
Equivalent to :meth:`ndarray.tobytes` (*self*, *order*). Return the bytes
of this array in a Python string.
-.. cfunction:: PyObject* PyArray_ToFile(PyArrayObject* self, FILE* fp, char* sep, char* format)
+.. c:function:: PyObject* PyArray_ToFile(PyArrayObject* self, FILE* fp, char* sep, char* format)
Write the contents of *self* to the file pointer *fp* in C-style
contiguous fashion. Write the data as binary bytes if *sep* is the
@@ -1605,7 +1605,7 @@ Conversion
"", then it is a Python print statement format string showing how
the items are to be written.
-.. cfunction:: int PyArray_Dump(PyObject* self, PyObject* file, int protocol)
+.. c:function:: int PyArray_Dump(PyObject* self, PyObject* file, int protocol)
Pickle the object in *self* to the given *file* (either a string
or a Python file object). If *file* is a Python string it is
@@ -1614,20 +1614,20 @@ Conversion
the highest available is used). This is a simple wrapper around
cPickle.dump(*self*, *file*, *protocol*).
-.. cfunction:: PyObject* PyArray_Dumps(PyObject* self, int protocol)
+.. c:function:: PyObject* PyArray_Dumps(PyObject* self, int protocol)
Pickle the object in *self* to a Python string and return it. Use
the Pickle *protocol* provided (or the highest available if
*protocol* is negative).
-.. cfunction:: int PyArray_FillWithScalar(PyArrayObject* arr, PyObject* obj)
+.. c:function:: int PyArray_FillWithScalar(PyArrayObject* arr, PyObject* obj)
Fill the array, *arr*, with the given scalar object, *obj*. The
object is first converted to the data type of *arr*, and then
copied into every location. A -1 is returned if an error occurs,
otherwise 0 is returned.
-.. cfunction:: PyObject* PyArray_View(PyArrayObject* self, PyArray_Descr* dtype, PyTypeObject *ptype)
+.. c:function:: PyObject* PyArray_View(PyArrayObject* self, PyArray_Descr* dtype, PyTypeObject *ptype)
Equivalent to :meth:`ndarray.view` (*self*, *dtype*). Return a new
view of the array *self* as possibly a different data-type, *dtype*,
@@ -1646,7 +1646,7 @@ Conversion
Shape Manipulation
^^^^^^^^^^^^^^^^^^
-.. cfunction:: PyObject* PyArray_Newshape(PyArrayObject* self, PyArray_Dims* newshape, NPY_ORDER order)
+.. c:function:: PyObject* PyArray_Newshape(PyArrayObject* self, PyArray_Dims* newshape, NPY_ORDER order)
Result will be a new array (pointing to the same memory location
as *self* if possible), but having a shape given by *newshape*.
@@ -1654,14 +1654,14 @@ Shape Manipulation
then a copy of the array with the new specified shape will be
returned.
-.. cfunction:: PyObject* PyArray_Reshape(PyArrayObject* self, PyObject* shape)
+.. c:function:: PyObject* PyArray_Reshape(PyArrayObject* self, PyObject* shape)
Equivalent to :meth:`ndarray.reshape` (*self*, *shape*) where *shape* is a
- sequence. Converts *shape* to a :ctype:`PyArray_Dims` structure and
- calls :cfunc:`PyArray_Newshape` internally.
+ sequence. Converts *shape* to a :c:type:`PyArray_Dims` structure and
+ calls :c:func:`PyArray_Newshape` internally.
For back-ward compatability -- Not recommended
-.. cfunction:: PyObject* PyArray_Squeeze(PyArrayObject* self)
+.. c:function:: PyObject* PyArray_Squeeze(PyArrayObject* self)
Equivalent to :meth:`ndarray.squeeze` (*self*). Return a new view of *self*
with all of the dimensions of length 1 removed from the shape.
@@ -1669,15 +1669,15 @@ Shape Manipulation
.. warning::
matrix objects are always 2-dimensional. Therefore,
- :cfunc:`PyArray_Squeeze` has no effect on arrays of matrix sub-class.
+ :c:func:`PyArray_Squeeze` has no effect on arrays of matrix sub-class.
-.. cfunction:: PyObject* PyArray_SwapAxes(PyArrayObject* self, int a1, int a2)
+.. c:function:: PyObject* PyArray_SwapAxes(PyArrayObject* self, int a1, int a2)
Equivalent to :meth:`ndarray.swapaxes` (*self*, *a1*, *a2*). The returned
array is a new view of the data in *self* with the given axes,
*a1* and *a2*, swapped.
-.. cfunction:: PyObject* PyArray_Resize(PyArrayObject* self, PyArray_Dims* newshape, int refcheck, NPY_ORDER fortran)
+.. c:function:: PyObject* PyArray_Resize(PyArrayObject* self, PyArray_Dims* newshape, int refcheck, NPY_ORDER fortran)
Equivalent to :meth:`ndarray.resize` (*self*, *newshape*, refcheck
``=`` *refcheck*, order= fortran ). This function only works on
@@ -1688,12 +1688,12 @@ Shape Manipulation
*self* - ``>base==NULL``, have *self* - ``>weakrefs==NULL``, and
(unless refcheck is 0) not be referenced by any other array. A
reference to the new array is returned. The fortran argument can
- be :cdata:`NPY_ANYORDER`, :cdata:`NPY_CORDER`, or
- :cdata:`NPY_FORTRANORDER`. It currently has no effect. Eventually
+ be :c:data:`NPY_ANYORDER`, :c:data:`NPY_CORDER`, or
+ :c:data:`NPY_FORTRANORDER`. It currently has no effect. Eventually
it could be used to determine how the resize operation should view
the data when constructing a differently-dimensioned array.
-.. cfunction:: PyObject* PyArray_Transpose(PyArrayObject* self, PyArray_Dims* permute)
+.. c:function:: PyObject* PyArray_Transpose(PyArrayObject* self, PyArray_Dims* permute)
Equivalent to :meth:`ndarray.transpose` (*self*, *permute*). Permute the
axes of the ndarray object *self* according to the data structure
@@ -1704,21 +1704,21 @@ Shape Manipulation
*permute* is ``NULL``, the shape of the result is
:math:`30\times20\times10.`
-.. cfunction:: PyObject* PyArray_Flatten(PyArrayObject* self, NPY_ORDER order)
+.. c:function:: PyObject* PyArray_Flatten(PyArrayObject* self, NPY_ORDER order)
Equivalent to :meth:`ndarray.flatten` (*self*, *order*). Return a 1-d copy
- of the array. If *order* is :cdata:`NPY_FORTRANORDER` the elements are
+ of the array. If *order* is :c:data:`NPY_FORTRANORDER` the elements are
scanned out in Fortran order (first-dimension varies the
- fastest). If *order* is :cdata:`NPY_CORDER`, the elements of ``self``
+ fastest). If *order* is :c:data:`NPY_CORDER`, the elements of ``self``
are scanned in C-order (last dimension varies the fastest). If
- *order* :cdata:`NPY_ANYORDER`, then the result of
- :cfunc:`PyArray_ISFORTRAN` (*self*) is used to determine which order
+ *order* :c:data:`NPY_ANYORDER`, then the result of
+ :c:func:`PyArray_ISFORTRAN` (*self*) is used to determine which order
to flatten.
-.. cfunction:: PyObject* PyArray_Ravel(PyArrayObject* self, NPY_ORDER order)
+.. c:function:: PyObject* PyArray_Ravel(PyArrayObject* self, NPY_ORDER order)
Equivalent to *self*.ravel(*order*). Same basic functionality
- as :cfunc:`PyArray_Flatten` (*self*, *order*) except if *order* is 0
+ as :c:func:`PyArray_Flatten` (*self*, *order*) except if *order* is 0
and *self* is C-style contiguous, the shape is altered but no copy
is performed.
@@ -1726,32 +1726,32 @@ Shape Manipulation
Item selection and manipulation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-.. cfunction:: PyObject* PyArray_TakeFrom(PyArrayObject* self, PyObject* indices, int axis, PyArrayObject* ret, NPY_CLIPMODE clipmode)
+.. c:function:: PyObject* PyArray_TakeFrom(PyArrayObject* self, PyObject* indices, int axis, PyArrayObject* ret, NPY_CLIPMODE clipmode)
Equivalent to :meth:`ndarray.take` (*self*, *indices*, *axis*, *ret*,
*clipmode*) except *axis* =None in Python is obtained by setting
- *axis* = :cdata:`NPY_MAXDIMS` in C. Extract the items from self
+ *axis* = :c:data:`NPY_MAXDIMS` in C. Extract the items from self
indicated by the integer-valued *indices* along the given *axis.*
- The clipmode argument can be :cdata:`NPY_RAISE`, :cdata:`NPY_WRAP`, or
- :cdata:`NPY_CLIP` to indicate what to do with out-of-bound indices. The
+ The clipmode argument can be :c:data:`NPY_RAISE`, :c:data:`NPY_WRAP`, or
+ :c:data:`NPY_CLIP` to indicate what to do with out-of-bound indices. The
*ret* argument can specify an output array rather than having one
created internally.
-.. cfunction:: PyObject* PyArray_PutTo(PyArrayObject* self, PyObject* values, PyObject* indices, NPY_CLIPMODE clipmode)
+.. c:function:: PyObject* PyArray_PutTo(PyArrayObject* self, PyObject* values, PyObject* indices, NPY_CLIPMODE clipmode)
Equivalent to *self*.put(*values*, *indices*, *clipmode*
). Put *values* into *self* at the corresponding (flattened)
*indices*. If *values* is too small it will be repeated as
necessary.
-.. cfunction:: PyObject* PyArray_PutMask(PyArrayObject* self, PyObject* values, PyObject* mask)
+.. c:function:: PyObject* PyArray_PutMask(PyArrayObject* self, PyObject* values, PyObject* mask)
Place the *values* in *self* wherever corresponding positions
(using a flattened context) in *mask* are true. The *mask* and
*self* arrays must have the same total number of elements. If
*values* is too small, it will be repeated as necessary.
-.. cfunction:: PyObject* PyArray_Repeat(PyArrayObject* self, PyObject* op, int axis)
+.. c:function:: PyObject* PyArray_Repeat(PyArrayObject* self, PyObject* op, int axis)
Equivalent to :meth:`ndarray.repeat` (*self*, *op*, *axis*). Copy the
elements of *self*, *op* times along the given *axis*. Either
@@ -1759,7 +1759,7 @@ Item selection and manipulation
->dimensions[ *axis* ] indicating how many times to repeat each
item along the axis.
-.. cfunction:: PyObject* PyArray_Choose(PyArrayObject* self, PyObject* op, PyArrayObject* ret, NPY_CLIPMODE clipmode)
+.. c:function:: PyObject* PyArray_Choose(PyArrayObject* self, PyObject* op, PyArrayObject* ret, NPY_CLIPMODE clipmode)
Equivalent to :meth:`ndarray.choose` (*self*, *op*, *ret*, *clipmode*).
Create a new array by selecting elements from the sequence of
@@ -1770,26 +1770,26 @@ Item selection and manipulation
created. The *clipmode* argument determines behavior for when
entries in *self* are not between 0 and len(*op*).
- .. cvar:: NPY_RAISE
+ .. c:var:: NPY_RAISE
raise a ValueError;
- .. cvar:: NPY_WRAP
+ .. c:var:: NPY_WRAP
wrap values < 0 by adding len(*op*) and values >=len(*op*)
by subtracting len(*op*) until they are in range;
- .. cvar:: NPY_CLIP
+ .. c:var:: NPY_CLIP
all values are clipped to the region [0, len(*op*) ).
-.. cfunction:: PyObject* PyArray_Sort(PyArrayObject* self, int axis)
+.. c:function:: PyObject* PyArray_Sort(PyArrayObject* self, int axis)
Equivalent to :meth:`ndarray.sort` (*self*, *axis*). Return an array with
the items of *self* sorted along *axis*.
-.. cfunction:: PyObject* PyArray_ArgSort(PyArrayObject* self, int axis)
+.. c:function:: PyObject* PyArray_ArgSort(PyArrayObject* self, int axis)
Equivalent to :meth:`ndarray.argsort` (*self*, *axis*). Return an array of
indices such that selection of these indices along the given
@@ -1801,10 +1801,10 @@ Item selection and manipulation
a new data-type with a different order of names and construct a
view of the array with that new data-type.
-.. cfunction:: PyObject* PyArray_LexSort(PyObject* sort_keys, int axis)
+.. c:function:: PyObject* PyArray_LexSort(PyObject* sort_keys, int axis)
Given a sequence of arrays (*sort_keys*) of the same shape,
- return an array of indices (similar to :cfunc:`PyArray_ArgSort` (...))
+ return an array of indices (similar to :c:func:`PyArray_ArgSort` (...))
that would sort the arrays lexicographically. A lexicographic sort
specifies that when two keys are found to be equal, the order is
based on comparison of subsequent keys. A merge sort (which leaves
@@ -1817,10 +1817,10 @@ Item selection and manipulation
the order you would use when comparing two elements).
If these arrays are all collected in a structured array, then
- :cfunc:`PyArray_Sort` (...) can also be used to sort the array
+ :c:func:`PyArray_Sort` (...) can also be used to sort the array
directly.
-.. cfunction:: PyObject* PyArray_SearchSorted(PyArrayObject* self, PyObject* values, NPY_SEARCHSIDE side, PyObject* perm)
+.. c:function:: PyObject* PyArray_SearchSorted(PyArrayObject* self, PyObject* values, NPY_SEARCHSIDE side, PyObject* perm)
Equivalent to :meth:`ndarray.searchsorted` (*self*, *values*, *side*,
*perm*). Assuming *self* is a 1-d array in ascending order, then the
@@ -1830,15 +1830,15 @@ Item selection and manipulation
in ascending order.
The *side* argument indicates whther the index returned should be that of
- the first suitable location (if :cdata:`NPY_SEARCHLEFT`) or of the last
- (if :cdata:`NPY_SEARCHRIGHT`).
+ the first suitable location (if :c:data:`NPY_SEARCHLEFT`) or of the last
+ (if :c:data:`NPY_SEARCHRIGHT`).
The *sorter* argument, if not ``NULL``, must be a 1D array of integer
indices the same length as *self*, that sorts it into ascending order.
- This is typically the result of a call to :cfunc:`PyArray_ArgSort` (...)
+ This is typically the result of a call to :c:func:`PyArray_ArgSort` (...)
Binary search is used to find the required insertion points.
-.. cfunction:: int PyArray_Partition(PyArrayObject *self, PyArrayObject * ktharray, int axis, NPY_SELECTKIND which)
+.. c:function:: int PyArray_Partition(PyArrayObject *self, PyArrayObject * ktharray, int axis, NPY_SELECTKIND which)
Equivalent to :meth:`ndarray.partition` (*self*, *ktharray*, *axis*,
*kind*). Partitions the array so that the values of the element indexed by
@@ -1853,33 +1853,33 @@ Item selection and manipulation
order of names and construct a view of the array with that new data-type.
Returns zero on success and -1 on failure.
-.. cfunction:: PyObject* PyArray_ArgPartition(PyArrayObject *op, PyArrayObject * ktharray, int axis, NPY_SELECTKIND which)
+.. c:function:: PyObject* PyArray_ArgPartition(PyArrayObject *op, PyArrayObject * ktharray, int axis, NPY_SELECTKIND which)
Equivalent to :meth:`ndarray.argpartition` (*self*, *ktharray*, *axis*,
*kind*). Return an array of indices such that selection of these indices
along the given ``axis`` would return a partitioned version of *self*.
-.. cfunction:: PyObject* PyArray_Diagonal(PyArrayObject* self, int offset, int axis1, int axis2)
+.. c:function:: PyObject* PyArray_Diagonal(PyArrayObject* self, int offset, int axis1, int axis2)
Equivalent to :meth:`ndarray.diagonal` (*self*, *offset*, *axis1*, *axis2*
). Return the *offset* diagonals of the 2-d arrays defined by
*axis1* and *axis2*.
-.. cfunction:: npy_intp PyArray_CountNonzero(PyArrayObject* self)
+.. c:function:: npy_intp PyArray_CountNonzero(PyArrayObject* self)
.. versionadded:: 1.6
Counts the number of non-zero elements in the array object *self*.
-.. cfunction:: PyObject* PyArray_Nonzero(PyArrayObject* self)
+.. c:function:: PyObject* PyArray_Nonzero(PyArrayObject* self)
Equivalent to :meth:`ndarray.nonzero` (*self*). Returns a tuple of index
arrays that select elements of *self* that are nonzero. If (nd=
- :cfunc:`PyArray_NDIM` ( ``self`` ))==1, then a single index array is
- returned. The index arrays have data type :cdata:`NPY_INTP`. If a
+ :c:func:`PyArray_NDIM` ( ``self`` ))==1, then a single index array is
+ returned. The index arrays have data type :c:data:`NPY_INTP`. If a
tuple is returned (nd :math:`\neq` 1), then its length is nd.
-.. cfunction:: PyObject* PyArray_Compress(PyArrayObject* self, PyObject* condition, int axis, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_Compress(PyArrayObject* self, PyObject* condition, int axis, PyArrayObject* out)
Equivalent to :meth:`ndarray.compress` (*self*, *condition*, *axis*
). Return the elements along *axis* corresponding to elements of
@@ -1891,16 +1891,16 @@ Calculation
.. tip::
- Pass in :cdata:`NPY_MAXDIMS` for axis in order to achieve the same
+ Pass in :c:data:`NPY_MAXDIMS` for axis in order to achieve the same
effect that is obtained by passing in *axis* = :const:`None` in Python
(treating the array as a 1-d array).
-.. cfunction:: PyObject* PyArray_ArgMax(PyArrayObject* self, int axis, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_ArgMax(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to :meth:`ndarray.argmax` (*self*, *axis*). Return the index of
the largest element of *self* along *axis*.
-.. cfunction:: PyObject* PyArray_ArgMin(PyArrayObject* self, int axis, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_ArgMin(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to :meth:`ndarray.argmin` (*self*, *axis*). Return the index of
the smallest element of *self* along *axis*.
@@ -1917,17 +1917,17 @@ Calculation
is not NULL. The caller of the routine has the responsability
to ``DECREF`` out if not NULL or a memory-leak will occur.
-.. cfunction:: PyObject* PyArray_Max(PyArrayObject* self, int axis, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_Max(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to :meth:`ndarray.max` (*self*, *axis*). Return the largest
element of *self* along the given *axis*.
-.. cfunction:: PyObject* PyArray_Min(PyArrayObject* self, int axis, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_Min(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to :meth:`ndarray.min` (*self*, *axis*). Return the smallest
element of *self* along the given *axis*.
-.. cfunction:: PyObject* PyArray_Ptp(PyArrayObject* self, int axis, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_Ptp(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to :meth:`ndarray.ptp` (*self*, *axis*). Return the difference
between the largest element of *self* along *axis* and the
@@ -1940,18 +1940,18 @@ Calculation
The rtype argument specifies the data-type the reduction should
take place over. This is important if the data-type of the array
is not "large" enough to handle the output. By default, all
- integer data-types are made at least as large as :cdata:`NPY_LONG`
+ integer data-types are made at least as large as :c:data:`NPY_LONG`
for the "add" and "multiply" ufuncs (which form the basis for
mean, sum, cumsum, prod, and cumprod functions).
-.. cfunction:: PyObject* PyArray_Mean(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_Mean(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to :meth:`ndarray.mean` (*self*, *axis*, *rtype*). Returns the
mean of the elements along the given *axis*, using the enumerated
type *rtype* as the data type to sum in. Default sum behavior is
- obtained using :cdata:`NPY_NOTYPE` for *rtype*.
+ obtained using :c:data:`NPY_NOTYPE` for *rtype*.
-.. cfunction:: PyObject* PyArray_Trace(PyArrayObject* self, int offset, int axis1, int axis2, int rtype, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_Trace(PyArrayObject* self, int offset, int axis1, int axis2, int rtype, PyArrayObject* out)
Equivalent to :meth:`ndarray.trace` (*self*, *offset*, *axis1*, *axis2*,
*rtype*). Return the sum (using *rtype* as the data type of
@@ -1960,62 +1960,62 @@ Calculation
chooses diagonals above the main diagonal. A negative offset
selects diagonals below the main diagonal.
-.. cfunction:: PyObject* PyArray_Clip(PyArrayObject* self, PyObject* min, PyObject* max)
+.. c:function:: PyObject* PyArray_Clip(PyArrayObject* self, PyObject* min, PyObject* max)
Equivalent to :meth:`ndarray.clip` (*self*, *min*, *max*). Clip an array,
*self*, so that values larger than *max* are fixed to *max* and
values less than *min* are fixed to *min*.
-.. cfunction:: PyObject* PyArray_Conjugate(PyArrayObject* self)
+.. c:function:: PyObject* PyArray_Conjugate(PyArrayObject* self)
Equivalent to :meth:`ndarray.conjugate` (*self*).
Return the complex conjugate of *self*. If *self* is not of
complex data type, then return *self* with an reference.
-.. cfunction:: PyObject* PyArray_Round(PyArrayObject* self, int decimals, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_Round(PyArrayObject* self, int decimals, PyArrayObject* out)
Equivalent to :meth:`ndarray.round` (*self*, *decimals*, *out*). Returns
the array with elements rounded to the nearest decimal place. The
decimal place is defined as the :math:`10^{-\textrm{decimals}}`
digit so that negative *decimals* cause rounding to the nearest 10's, 100's, etc. If out is ``NULL``, then the output array is created, otherwise the output is placed in *out* which must be the correct size and type.
-.. cfunction:: PyObject* PyArray_Std(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_Std(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to :meth:`ndarray.std` (*self*, *axis*, *rtype*). Return the
standard deviation using data along *axis* converted to data type
*rtype*.
-.. cfunction:: PyObject* PyArray_Sum(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_Sum(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to :meth:`ndarray.sum` (*self*, *axis*, *rtype*). Return 1-d
vector sums of elements in *self* along *axis*. Perform the sum
after converting data to data type *rtype*.
-.. cfunction:: PyObject* PyArray_CumSum(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_CumSum(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to :meth:`ndarray.cumsum` (*self*, *axis*, *rtype*). Return
cumulative 1-d sums of elements in *self* along *axis*. Perform
the sum after converting data to data type *rtype*.
-.. cfunction:: PyObject* PyArray_Prod(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_Prod(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to :meth:`ndarray.prod` (*self*, *axis*, *rtype*). Return 1-d
products of elements in *self* along *axis*. Perform the product
after converting data to data type *rtype*.
-.. cfunction:: PyObject* PyArray_CumProd(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_CumProd(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to :meth:`ndarray.cumprod` (*self*, *axis*, *rtype*). Return
1-d cumulative products of elements in ``self`` along ``axis``.
Perform the product after converting data to data type ``rtype``.
-.. cfunction:: PyObject* PyArray_All(PyArrayObject* self, int axis, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_All(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to :meth:`ndarray.all` (*self*, *axis*). Return an array with
True elements for every 1-d sub-array of ``self`` defined by
``axis`` in which all the elements are True.
-.. cfunction:: PyObject* PyArray_Any(PyArrayObject* self, int axis, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_Any(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to :meth:`ndarray.any` (*self*, *axis*). Return an array with
True elements for every 1-d sub-array of *self* defined by *axis*
@@ -2028,7 +2028,7 @@ Functions
Array Functions
^^^^^^^^^^^^^^^
-.. cfunction:: int PyArray_AsCArray(PyObject** op, void* ptr, npy_intp* dims, int nd, int typenum, int itemsize)
+.. c:function:: int PyArray_AsCArray(PyObject** op, void* ptr, npy_intp* dims, int nd, int typenum, int itemsize)
Sometimes it is useful to access a multidimensional array as a
C-style multi-dimensional array so that algorithms can be
@@ -2075,30 +2075,30 @@ Array Functions
arrays. To pass to functions requiring those kind of inputs, you must
statically define the required array and copy data.
-.. cfunction:: int PyArray_Free(PyObject* op, void* ptr)
+.. c:function:: int PyArray_Free(PyObject* op, void* ptr)
Must be called with the same objects and memory locations returned
- from :cfunc:`PyArray_AsCArray` (...). This function cleans up memory
+ from :c:func:`PyArray_AsCArray` (...). This function cleans up memory
that otherwise would get leaked.
-.. cfunction:: PyObject* PyArray_Concatenate(PyObject* obj, int axis)
+.. c:function:: PyObject* PyArray_Concatenate(PyObject* obj, int axis)
Join the sequence of objects in *obj* together along *axis* into a
single array. If the dimensions or types are not compatible an
error is raised.
-.. cfunction:: PyObject* PyArray_InnerProduct(PyObject* obj1, PyObject* obj2)
+.. c:function:: PyObject* PyArray_InnerProduct(PyObject* obj1, PyObject* obj2)
Compute a product-sum over the last dimensions of *obj1* and
*obj2*. Neither array is conjugated.
-.. cfunction:: PyObject* PyArray_MatrixProduct(PyObject* obj1, PyObject* obj)
+.. c:function:: PyObject* PyArray_MatrixProduct(PyObject* obj1, PyObject* obj)
Compute a product-sum over the last dimension of *obj1* and the
second-to-last dimension of *obj2*. For 2-d arrays this is a
matrix-product. Neither array is conjugated.
-.. cfunction:: PyObject* PyArray_MatrixProduct2(PyObject* obj1, PyObject* obj, PyObject* out)
+.. c:function:: PyObject* PyArray_MatrixProduct2(PyObject* obj1, PyObject* obj, PyObject* out)
.. versionadded:: 1.6
@@ -2106,7 +2106,7 @@ Array Functions
output array must have the correct shape, type, and be
C-contiguous, or an exception is raised.
-.. cfunction:: PyObject* PyArray_EinsteinSum(char* subscripts, npy_intp nop, PyArrayObject** op_in, PyArray_Descr* dtype, NPY_ORDER order, NPY_CASTING casting, PyArrayObject* out)
+.. c:function:: PyObject* PyArray_EinsteinSum(char* subscripts, npy_intp nop, PyArrayObject** op_in, PyArray_Descr* dtype, NPY_ORDER order, NPY_CASTING casting, PyArrayObject* out)
.. versionadded:: 1.6
@@ -2116,17 +2116,17 @@ Array Functions
letters. The number of operands is in *nop*, and *op_in* is an
array containing those operands. The data type of the output can
be forced with *dtype*, the output order can be forced with *order*
- (:cdata:`NPY_KEEPORDER` is recommended), and when *dtype* is specified,
+ (:c:data:`NPY_KEEPORDER` is recommended), and when *dtype* is specified,
*casting* indicates how permissive the data conversion should be.
See the :func:`einsum` function for more details.
-.. cfunction:: PyObject* PyArray_CopyAndTranspose(PyObject \* op)
+.. c:function:: PyObject* PyArray_CopyAndTranspose(PyObject \* op)
A specialized copy and transpose function that works only for 2-d
arrays. The returned array is a transposed copy of *op*.
-.. cfunction:: PyObject* PyArray_Correlate(PyObject* op1, PyObject* op2, int mode)
+.. c:function:: PyObject* PyArray_Correlate(PyObject* op1, PyObject* op2, int mode)
Compute the 1-d correlation of the 1-d arrays *op1* and *op2*
. The correlation is computed at each output point by multiplying
@@ -2144,7 +2144,7 @@ Array Functions
arguments are swapped, and the conjugate is never taken for complex arrays.
See PyArray_Correlate2 for the usual signal processing correlation.
-.. cfunction:: PyObject* PyArray_Correlate2(PyObject* op1, PyObject* op2, int mode)
+.. c:function:: PyObject* PyArray_Correlate2(PyObject* op1, PyObject* op2, int mode)
Updated version of PyArray_Correlate, which uses the usual definition of
correlation for 1d arrays. The correlation is computed at each output point
@@ -2161,10 +2161,10 @@ Array Functions
z[k] = sum_n op1[n] * conj(op2[n+k])
-.. cfunction:: PyObject* PyArray_Where(PyObject* condition, PyObject* x, PyObject* y)
+.. c:function:: PyObject* PyArray_Where(PyObject* condition, PyObject* x, PyObject* y)
If both ``x`` and ``y`` are ``NULL``, then return
- :cfunc:`PyArray_Nonzero` (*condition*). Otherwise, both *x* and *y*
+ :c:func:`PyArray_Nonzero` (*condition*). Otherwise, both *x* and *y*
must be given and the object returned is shaped like *condition*
and has elements of *x* and *y* where *condition* is respectively
True or False.
@@ -2173,7 +2173,7 @@ Array Functions
Other functions
^^^^^^^^^^^^^^^
-.. cfunction:: Bool PyArray_CheckStrides(int elsize, int nd, npy_intp numbytes, npy_intp* dims, npy_intp* newstrides)
+.. c:function:: Bool PyArray_CheckStrides(int elsize, int nd, npy_intp numbytes, npy_intp* dims, npy_intp* newstrides)
Determine if *newstrides* is a strides array consistent with the
memory of an *nd* -dimensional array with shape ``dims`` and
@@ -2182,17 +2182,17 @@ Other functions
ever mean jumping more than *numbytes* which is the assumed size
of the available memory segment. If *numbytes* is 0, then an
equivalent *numbytes* is computed assuming *nd*, *dims*, and
- *elsize* refer to a single-segment array. Return :cdata:`NPY_TRUE` if
- *newstrides* is acceptable, otherwise return :cdata:`NPY_FALSE`.
+ *elsize* refer to a single-segment array. Return :c:data:`NPY_TRUE` if
+ *newstrides* is acceptable, otherwise return :c:data:`NPY_FALSE`.
-.. cfunction:: npy_intp PyArray_MultiplyList(npy_intp* seq, int n)
+.. c:function:: npy_intp PyArray_MultiplyList(npy_intp* seq, int n)
-.. cfunction:: int PyArray_MultiplyIntList(int* seq, int n)
+.. c:function:: int PyArray_MultiplyIntList(int* seq, int n)
Both of these routines multiply an *n* -length array, *seq*, of
integers and return the result. No overflow checking is performed.
-.. cfunction:: int PyArray_CompareLists(npy_intp* l1, npy_intp* l2, int n)
+.. c:function:: int PyArray_CompareLists(npy_intp* l1, npy_intp* l2, int n)
Given two *n* -length arrays of integers, *l1*, and *l2*, return
1 if the lists are identical; otherwise, return 0.
@@ -2203,15 +2203,15 @@ Auxiliary Data With Object Semantics
.. versionadded:: 1.7.0
-.. ctype:: NpyAuxData
+.. c:type:: NpyAuxData
When working with more complex dtypes which are composed of other dtypes,
such as the struct dtype, creating inner loops that manipulate the dtypes
requires carrying along additional data. NumPy supports this idea
-through a struct :ctype:`NpyAuxData`, mandating a few conventions so that
+through a struct :c:type:`NpyAuxData`, mandating a few conventions so that
it is possible to do this.
-Defining an :ctype:`NpyAuxData` is similar to defining a class in C++,
+Defining an :c:type:`NpyAuxData` is similar to defining a class in C++,
but the object semantics have to be tracked manually since the API is in C.
Here's an example for a function which doubles up an element using
an element copier function as a primitive.::
@@ -2268,22 +2268,22 @@ an element copier function as a primitive.::
return (NpyAuxData *)ret;
}
-.. ctype:: NpyAuxData_FreeFunc
+.. c:type:: NpyAuxData_FreeFunc
The function pointer type for NpyAuxData free functions.
-.. ctype:: NpyAuxData_CloneFunc
+.. c:type:: NpyAuxData_CloneFunc
The function pointer type for NpyAuxData clone functions. These
functions should never set the Python exception on error, because
they may be called from a multi-threaded context.
-.. cfunction:: NPY_AUXDATA_FREE(auxdata)
+.. c:function:: NPY_AUXDATA_FREE(auxdata)
A macro which calls the auxdata's free function appropriately,
does nothing if auxdata is NULL.
-.. cfunction:: NPY_AUXDATA_CLONE(auxdata)
+.. c:function:: NPY_AUXDATA_CLONE(auxdata)
A macro which calls the auxdata's clone function appropriately,
returning a deep copy of the auxiliary data.
@@ -2292,69 +2292,69 @@ Array Iterators
---------------
As of Numpy 1.6, these array iterators are superceded by
-the new array iterator, :ctype:`NpyIter`.
+the new array iterator, :c:type:`NpyIter`.
An array iterator is a simple way to access the elements of an
N-dimensional array quickly and efficiently. Section `2
<#sec-array-iterator>`__ provides more description and examples of
this useful approach to looping over an array.
-.. cfunction:: PyObject* PyArray_IterNew(PyObject* arr)
+.. c:function:: PyObject* PyArray_IterNew(PyObject* arr)
Return an array iterator object from the array, *arr*. This is
equivalent to *arr*. **flat**. The array iterator object makes
it easy to loop over an N-dimensional non-contiguous array in
C-style contiguous fashion.
-.. cfunction:: PyObject* PyArray_IterAllButAxis(PyObject* arr, int \*axis)
+.. c:function:: PyObject* PyArray_IterAllButAxis(PyObject* arr, int \*axis)
Return an array iterator that will iterate over all axes but the
one provided in *\*axis*. The returned iterator cannot be used
- with :cfunc:`PyArray_ITER_GOTO1D`. This iterator could be used to
+ with :c:func:`PyArray_ITER_GOTO1D`. This iterator could be used to
write something similar to what ufuncs do wherein the loop over
the largest axis is done by a separate sub-routine. If *\*axis* is
negative then *\*axis* will be set to the axis having the smallest
stride and that axis will be used.
-.. cfunction:: PyObject *PyArray_BroadcastToShape(PyObject* arr, npy_intp *dimensions, int nd)
+.. c:function:: PyObject *PyArray_BroadcastToShape(PyObject* arr, npy_intp *dimensions, int nd)
Return an array iterator that is broadcast to iterate as an array
of the shape provided by *dimensions* and *nd*.
-.. cfunction:: int PyArrayIter_Check(PyObject* op)
+.. c:function:: int PyArrayIter_Check(PyObject* op)
Evaluates true if *op* is an array iterator (or instance of a
subclass of the array iterator type).
-.. cfunction:: void PyArray_ITER_RESET(PyObject* iterator)
+.. c:function:: void PyArray_ITER_RESET(PyObject* iterator)
Reset an *iterator* to the beginning of the array.
-.. cfunction:: void PyArray_ITER_NEXT(PyObject* iterator)
+.. c:function:: void PyArray_ITER_NEXT(PyObject* iterator)
Incremement the index and the dataptr members of the *iterator* to
point to the next element of the array. If the array is not
(C-style) contiguous, also increment the N-dimensional coordinates
array.
-.. cfunction:: void *PyArray_ITER_DATA(PyObject* iterator)
+.. c:function:: void *PyArray_ITER_DATA(PyObject* iterator)
A pointer to the current element of the array.
-.. cfunction:: void PyArray_ITER_GOTO(PyObject* iterator, npy_intp* destination)
+.. c:function:: void PyArray_ITER_GOTO(PyObject* iterator, npy_intp* destination)
Set the *iterator* index, dataptr, and coordinates members to the
location in the array indicated by the N-dimensional c-array,
*destination*, which must have size at least *iterator*
->nd_m1+1.
-.. cfunction:: PyArray_ITER_GOTO1D(PyObject* iterator, npy_intp index)
+.. c:function:: PyArray_ITER_GOTO1D(PyObject* iterator, npy_intp index)
Set the *iterator* index and dataptr to the location in the array
indicated by the integer *index* which points to an element in the
C-styled flattened array.
-.. cfunction:: int PyArray_ITER_NOTDONE(PyObject* iterator)
+.. c:function:: int PyArray_ITER_NOTDONE(PyObject* iterator)
Evaluates TRUE as long as the iterator has not looped through all of
the elements, otherwise it evaluates FALSE.
@@ -2363,55 +2363,55 @@ this useful approach to looping over an array.
Broadcasting (multi-iterators)
------------------------------
-.. cfunction:: PyObject* PyArray_MultiIterNew(int num, ...)
+.. c:function:: PyObject* PyArray_MultiIterNew(int num, ...)
A simplified interface to broadcasting. This function takes the
- number of arrays to broadcast and then *num* extra ( :ctype:`PyObject *`
+ number of arrays to broadcast and then *num* extra ( :c:type:`PyObject *`
) arguments. These arguments are converted to arrays and iterators
- are created. :cfunc:`PyArray_Broadcast` is then called on the resulting
+ are created. :c:func:`PyArray_Broadcast` is then called on the resulting
multi-iterator object. The resulting, broadcasted mult-iterator
object is then returned. A broadcasted operation can then be
- performed using a single loop and using :cfunc:`PyArray_MultiIter_NEXT`
+ performed using a single loop and using :c:func:`PyArray_MultiIter_NEXT`
(..)
-.. cfunction:: void PyArray_MultiIter_RESET(PyObject* multi)
+.. c:function:: void PyArray_MultiIter_RESET(PyObject* multi)
Reset all the iterators to the beginning in a multi-iterator
object, *multi*.
-.. cfunction:: void PyArray_MultiIter_NEXT(PyObject* multi)
+.. c:function:: void PyArray_MultiIter_NEXT(PyObject* multi)
Advance each iterator in a multi-iterator object, *multi*, to its
next (broadcasted) element.
-.. cfunction:: void *PyArray_MultiIter_DATA(PyObject* multi, int i)
+.. c:function:: void *PyArray_MultiIter_DATA(PyObject* multi, int i)
Return the data-pointer of the *i* :math:`^{\textrm{th}}` iterator
in a multi-iterator object.
-.. cfunction:: void PyArray_MultiIter_NEXTi(PyObject* multi, int i)
+.. c:function:: void PyArray_MultiIter_NEXTi(PyObject* multi, int i)
Advance the pointer of only the *i* :math:`^{\textrm{th}}` iterator.
-.. cfunction:: void PyArray_MultiIter_GOTO(PyObject* multi, npy_intp* destination)
+.. c:function:: void PyArray_MultiIter_GOTO(PyObject* multi, npy_intp* destination)
Advance each iterator in a multi-iterator object, *multi*, to the
given :math:`N` -dimensional *destination* where :math:`N` is the
number of dimensions in the broadcasted array.
-.. cfunction:: void PyArray_MultiIter_GOTO1D(PyObject* multi, npy_intp index)
+.. c:function:: void PyArray_MultiIter_GOTO1D(PyObject* multi, npy_intp index)
Advance each iterator in a multi-iterator object, *multi*, to the
corresponding location of the *index* into the flattened
broadcasted array.
-.. cfunction:: int PyArray_MultiIter_NOTDONE(PyObject* multi)
+.. c:function:: int PyArray_MultiIter_NOTDONE(PyObject* multi)
Evaluates TRUE as long as the multi-iterator has not looped
through all of the elements (of the broadcasted result), otherwise
it evaluates FALSE.
-.. cfunction:: int PyArray_Broadcast(PyArrayMultiIterObject* mit)
+.. c:function:: int PyArray_Broadcast(PyArrayMultiIterObject* mit)
This function encapsulates the broadcasting rules. The *mit*
container should already contain iterators for all the arrays that
@@ -2419,7 +2419,7 @@ Broadcasting (multi-iterators)
so that iteration over each simultaneously will accomplish the
broadcasting. A negative number is returned if an error occurs.
-.. cfunction:: int PyArray_RemoveSmallest(PyArrayMultiIterObject* mit)
+.. c:function:: int PyArray_RemoveSmallest(PyArrayMultiIterObject* mit)
This function takes a multi-iterator object that has been
previously "broadcasted," finds the dimension with the smallest
@@ -2446,7 +2446,7 @@ hypercube. Neighborhood iterator automatically handle boundaries, thus making
this kind of code much easier to write than manual boundaries handling, at the
cost of a slight overhead.
-.. cfunction:: PyObject* PyArray_NeighborhoodIterNew(PyArrayIterObject* iter, npy_intp bounds, int mode, PyArrayObject* fill_value)
+.. c:function:: PyObject* PyArray_NeighborhoodIterNew(PyArrayIterObject* iter, npy_intp bounds, int mode, PyArrayObject* fill_value)
This function creates a new neighborhood iterator from an existing
iterator. The neighborhood will be computed relatively to the position
@@ -2513,13 +2513,13 @@ cost of a slight overhead.
PyArrayNeighborhoodIter_Reset(neigh_iter);
}
-.. cfunction:: int PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter)
+.. c:function:: int PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter)
Reset the iterator position to the first point of the neighborhood. This
should be called whenever the iter argument given at
PyArray_NeighborhoodIterObject is changed (see example)
-.. cfunction:: int PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter)
+.. c:function:: int PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter)
After this call, iter->dataptr points to the next point of the
neighborhood. Calling this function after every point of the
@@ -2528,7 +2528,7 @@ cost of a slight overhead.
Array Scalars
-------------
-.. cfunction:: PyObject* PyArray_Return(PyArrayObject* arr)
+.. c:function:: PyObject* PyArray_Return(PyArrayObject* arr)
This function steals a reference to *arr*.
@@ -2536,7 +2536,7 @@ Array Scalars
if so, returns the appropriate array scalar. It should be used
whenever 0-dimensional arrays could be returned to Python.
-.. cfunction:: PyObject* PyArray_Scalar(void* data, PyArray_Descr* dtype, PyObject* itemsize)
+.. c:function:: PyObject* PyArray_Scalar(void* data, PyArray_Descr* dtype, PyObject* itemsize)
Return an array scalar object of the given enumerated *typenum*
and *itemsize* by **copying** from memory pointed to by *data*
@@ -2544,20 +2544,20 @@ Array Scalars
if appropriate to the data-type because array scalars are always
in correct machine-byte order.
-.. cfunction:: PyObject* PyArray_ToScalar(void* data, PyArrayObject* arr)
+.. c:function:: PyObject* PyArray_ToScalar(void* data, PyArrayObject* arr)
Return an array scalar object of the type and itemsize indicated
by the array object *arr* copied from the memory pointed to by
*data* and swapping if the data in *arr* is not in machine
byte-order.
-.. cfunction:: PyObject* PyArray_FromScalar(PyObject* scalar, PyArray_Descr* outcode)
+.. c:function:: PyObject* PyArray_FromScalar(PyObject* scalar, PyArray_Descr* outcode)
Return a 0-dimensional array of type determined by *outcode* from
*scalar* which should be an array-scalar object. If *outcode* is
NULL, then the type is determined from *scalar*.
-.. cfunction:: void PyArray_ScalarAsCtype(PyObject* scalar, void* ctypeptr)
+.. c:function:: void PyArray_ScalarAsCtype(PyObject* scalar, void* ctypeptr)
Return in *ctypeptr* a pointer to the actual value in an array
scalar. There is no error checking so *scalar* must be an
@@ -2566,45 +2566,45 @@ Array Scalars
is copied into the memory of *ctypeptr*, for all other types, the
actual data is copied into the address pointed to by *ctypeptr*.
-.. cfunction:: void PyArray_CastScalarToCtype(PyObject* scalar, void* ctypeptr, PyArray_Descr* outcode)
+.. c:function:: void PyArray_CastScalarToCtype(PyObject* scalar, void* ctypeptr, PyArray_Descr* outcode)
Return the data (cast to the data type indicated by *outcode*)
from the array-scalar, *scalar*, into the memory pointed to by
*ctypeptr* (which must be large enough to handle the incoming
memory).
-.. cfunction:: PyObject* PyArray_TypeObjectFromType(int type)
+.. c:function:: PyObject* PyArray_TypeObjectFromType(int type)
Returns a scalar type-object from a type-number, *type*
- . Equivalent to :cfunc:`PyArray_DescrFromType` (*type*)->typeobj
+ . Equivalent to :c:func:`PyArray_DescrFromType` (*type*)->typeobj
except for reference counting and error-checking. Returns a new
reference to the typeobject on success or ``NULL`` on failure.
-.. cfunction:: NPY_SCALARKIND PyArray_ScalarKind(int typenum, PyArrayObject** arr)
+.. c:function:: NPY_SCALARKIND PyArray_ScalarKind(int typenum, PyArrayObject** arr)
- See the function :cfunc:`PyArray_MinScalarType` for an alternative
+ See the function :c:func:`PyArray_MinScalarType` for an alternative
mechanism introduced in NumPy 1.6.0.
Return the kind of scalar represented by *typenum* and the array
in *\*arr* (if *arr* is not ``NULL`` ). The array is assumed to be
rank-0 and only used if *typenum* represents a signed integer. If
*arr* is not ``NULL`` and the first element is negative then
- :cdata:`NPY_INTNEG_SCALAR` is returned, otherwise
- :cdata:`NPY_INTPOS_SCALAR` is returned. The possible return values
- are :cdata:`NPY_{kind}_SCALAR` where ``{kind}`` can be **INTPOS**,
+ :c:data:`NPY_INTNEG_SCALAR` is returned, otherwise
+ :c:data:`NPY_INTPOS_SCALAR` is returned. The possible return values
+ are :c:data:`NPY_{kind}_SCALAR` where ``{kind}`` can be **INTPOS**,
**INTNEG**, **FLOAT**, **COMPLEX**, **BOOL**, or **OBJECT**.
- :cdata:`NPY_NOSCALAR` is also an enumerated value
- :ctype:`NPY_SCALARKIND` variables can take on.
+ :c:data:`NPY_NOSCALAR` is also an enumerated value
+ :c:type:`NPY_SCALARKIND` variables can take on.
-.. cfunction:: int PyArray_CanCoerceScalar(char thistype, char neededtype, NPY_SCALARKIND scalar)
+.. c:function:: int PyArray_CanCoerceScalar(char thistype, char neededtype, NPY_SCALARKIND scalar)
- See the function :cfunc:`PyArray_ResultType` for details of
+ See the function :c:func:`PyArray_ResultType` for details of
NumPy type promotion, updated in NumPy 1.6.0.
Implements the rules for scalar coercion. Scalars are only
silently coerced from thistype to neededtype if this function
- returns nonzero. If scalar is :cdata:`NPY_NOSCALAR`, then this
- function is equivalent to :cfunc:`PyArray_CanCastSafely`. The rule is
+ returns nonzero. If scalar is :c:data:`NPY_NOSCALAR`, then this
+ function is equivalent to :c:func:`PyArray_CanCastSafely`. The rule is
that scalars of the same KIND can be coerced into arrays of the
same KIND. This rule means that high-precision scalars will never
cause low-precision arrays of the same KIND to be upcast.
@@ -2620,78 +2620,78 @@ Data-type descriptors
Data-type objects must be reference counted so be aware of the
action on the data-type reference of different C-API calls. The
standard rule is that when a data-type object is returned it is a
- new reference. Functions that take :ctype:`PyArray_Descr *` objects and
+ new reference. Functions that take :c:type:`PyArray_Descr *` objects and
return arrays steal references to the data-type their inputs
unless otherwise noted. Therefore, you must own a reference to any
data-type object used as input to such a function.
-.. cfunction:: int PyArray_DescrCheck(PyObject* obj)
+.. c:function:: int PyArray_DescrCheck(PyObject* obj)
- Evaluates as true if *obj* is a data-type object ( :ctype:`PyArray_Descr *` ).
+ Evaluates as true if *obj* is a data-type object ( :c:type:`PyArray_Descr *` ).
-.. cfunction:: PyArray_Descr* PyArray_DescrNew(PyArray_Descr* obj)
+.. c:function:: PyArray_Descr* PyArray_DescrNew(PyArray_Descr* obj)
Return a new data-type object copied from *obj* (the fields
reference is just updated so that the new object points to the
same fields dictionary if any).
-.. cfunction:: PyArray_Descr* PyArray_DescrNewFromType(int typenum)
+.. c:function:: PyArray_Descr* PyArray_DescrNewFromType(int typenum)
Create a new data-type object from the built-in (or
user-registered) data-type indicated by *typenum*. All builtin
types should not have any of their fields changed. This creates a
- new copy of the :ctype:`PyArray_Descr` structure so that you can fill
+ new copy of the :c:type:`PyArray_Descr` structure so that you can fill
it in as appropriate. This function is especially needed for
flexible data-types which need to have a new elsize member in
order to be meaningful in array construction.
-.. cfunction:: PyArray_Descr* PyArray_DescrNewByteorder(PyArray_Descr* obj, char newendian)
+.. c:function:: PyArray_Descr* PyArray_DescrNewByteorder(PyArray_Descr* obj, char newendian)
Create a new data-type object with the byteorder set according to
*newendian*. All referenced data-type objects (in subdescr and
fields members of the data-type object) are also changed
- (recursively). If a byteorder of :cdata:`NPY_IGNORE` is encountered it
- is left alone. If newendian is :cdata:`NPY_SWAP`, then all byte-orders
- are swapped. Other valid newendian values are :cdata:`NPY_NATIVE`,
- :cdata:`NPY_LITTLE`, and :cdata:`NPY_BIG` which all cause the returned
+ (recursively). If a byteorder of :c:data:`NPY_IGNORE` is encountered it
+ is left alone. If newendian is :c:data:`NPY_SWAP`, then all byte-orders
+ are swapped. Other valid newendian values are :c:data:`NPY_NATIVE`,
+ :c:data:`NPY_LITTLE`, and :c:data:`NPY_BIG` which all cause the returned
data-typed descriptor (and all it's
referenced data-type descriptors) to have the corresponding byte-
order.
-.. cfunction:: PyArray_Descr* PyArray_DescrFromObject(PyObject* op, PyArray_Descr* mintype)
+.. c:function:: PyArray_Descr* PyArray_DescrFromObject(PyObject* op, PyArray_Descr* mintype)
Determine an appropriate data-type object from the object *op*
(which should be a "nested" sequence object) and the minimum
data-type descriptor mintype (which can be ``NULL`` ). Similar in
behavior to array(*op*).dtype. Don't confuse this function with
- :cfunc:`PyArray_DescrConverter`. This function essentially looks at
+ :c:func:`PyArray_DescrConverter`. This function essentially looks at
all the objects in the (nested) sequence and determines the
data-type from the elements it finds.
-.. cfunction:: PyArray_Descr* PyArray_DescrFromScalar(PyObject* scalar)
+.. c:function:: PyArray_Descr* PyArray_DescrFromScalar(PyObject* scalar)
Return a data-type object from an array-scalar object. No checking
is done to be sure that *scalar* is an array scalar. If no
suitable data-type can be determined, then a data-type of
- :cdata:`NPY_OBJECT` is returned by default.
+ :c:data:`NPY_OBJECT` is returned by default.
-.. cfunction:: PyArray_Descr* PyArray_DescrFromType(int typenum)
+.. c:function:: PyArray_Descr* PyArray_DescrFromType(int typenum)
Returns a data-type object corresponding to *typenum*. The
*typenum* can be one of the enumerated types, a character code for
one of the enumerated types, or a user-defined type.
-.. cfunction:: int PyArray_DescrConverter(PyObject* obj, PyArray_Descr** dtype)
+.. c:function:: int PyArray_DescrConverter(PyObject* obj, PyArray_Descr** dtype)
Convert any compatible Python object, *obj*, to a data-type object
in *dtype*. A large number of Python objects can be converted to
data-type objects. See :ref:`arrays.dtypes` for a complete
description. This version of the converter converts None objects
- to a :cdata:`NPY_DEFAULT_TYPE` data-type object. This function can
- be used with the "O&" character code in :cfunc:`PyArg_ParseTuple`
+ to a :c:data:`NPY_DEFAULT_TYPE` data-type object. This function can
+ be used with the "O&" character code in :c:func:`PyArg_ParseTuple`
processing.
-.. cfunction:: int PyArray_DescrConverter2(PyObject* obj, PyArray_Descr** dtype)
+.. c:function:: int PyArray_DescrConverter2(PyObject* obj, PyArray_Descr** dtype)
Convert any compatible Python object, *obj*, to a data-type
object in *dtype*. This version of the converter converts None
@@ -2699,34 +2699,34 @@ Data-type descriptors
can also be used with the "O&" character in PyArg_ParseTuple
processing.
-.. cfunction:: int Pyarray_DescrAlignConverter(PyObject* obj, PyArray_Descr** dtype)
+.. c:function:: int Pyarray_DescrAlignConverter(PyObject* obj, PyArray_Descr** dtype)
- Like :cfunc:`PyArray_DescrConverter` except it aligns C-struct-like
+ Like :c:func:`PyArray_DescrConverter` except it aligns C-struct-like
objects on word-boundaries as the compiler would.
-.. cfunction:: int Pyarray_DescrAlignConverter2(PyObject* obj, PyArray_Descr** dtype)
+.. c:function:: int Pyarray_DescrAlignConverter2(PyObject* obj, PyArray_Descr** dtype)
- Like :cfunc:`PyArray_DescrConverter2` except it aligns C-struct-like
+ Like :c:func:`PyArray_DescrConverter2` except it aligns C-struct-like
objects on word-boundaries as the compiler would.
-.. cfunction:: PyObject *PyArray_FieldNames(PyObject* dict)
+.. c:function:: PyObject *PyArray_FieldNames(PyObject* dict)
Take the fields dictionary, *dict*, such as the one attached to a
data-type object and construct an ordered-list of field names such
- as is stored in the names field of the :ctype:`PyArray_Descr` object.
+ as is stored in the names field of the :c:type:`PyArray_Descr` object.
Conversion Utilities
--------------------
-For use with :cfunc:`PyArg_ParseTuple`
+For use with :c:func:`PyArg_ParseTuple`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-All of these functions can be used in :cfunc:`PyArg_ParseTuple` (...) with
+All of these functions can be used in :c:func:`PyArg_ParseTuple` (...) with
the "O&" format specifier to automatically convert any Python object
to the required C-object. All of these functions return
-:cdata:`NPY_SUCCEED` if successful and :cdata:`NPY_FAIL` if not. The first
+:c:data:`NPY_SUCCEED` if successful and :c:data:`NPY_FAIL` if not. The first
argument to all of these function is a Python object. The second
argument is the **address** of the C-type to convert the Python object
to.
@@ -2739,27 +2739,27 @@ to.
require freeing memory, and/or altering the reference counts of
specific objects based on your use.
-.. cfunction:: int PyArray_Converter(PyObject* obj, PyObject** address)
+.. c:function:: int PyArray_Converter(PyObject* obj, PyObject** address)
- Convert any Python object to a :ctype:`PyArrayObject`. If
- :cfunc:`PyArray_Check` (*obj*) is TRUE then its reference count is
+ Convert any Python object to a :c:type:`PyArrayObject`. If
+ :c:func:`PyArray_Check` (*obj*) is TRUE then its reference count is
incremented and a reference placed in *address*. If *obj* is not
- an array, then convert it to an array using :cfunc:`PyArray_FromAny`
+ an array, then convert it to an array using :c:func:`PyArray_FromAny`
. No matter what is returned, you must DECREF the object returned
by this routine in *address* when you are done with it.
-.. cfunction:: int PyArray_OutputConverter(PyObject* obj, PyArrayObject** address)
+.. c:function:: int PyArray_OutputConverter(PyObject* obj, PyArrayObject** address)
This is a default converter for output arrays given to
- functions. If *obj* is :cdata:`Py_None` or ``NULL``, then *\*address*
- will be ``NULL`` but the call will succeed. If :cfunc:`PyArray_Check` (
+ functions. If *obj* is :c:data:`Py_None` or ``NULL``, then *\*address*
+ will be ``NULL`` but the call will succeed. If :c:func:`PyArray_Check` (
*obj*) is TRUE then it is returned in *\*address* without
incrementing its reference count.
-.. cfunction:: int PyArray_IntpConverter(PyObject* obj, PyArray_Dims* seq)
+.. c:function:: int PyArray_IntpConverter(PyObject* obj, PyArray_Dims* seq)
- Convert any Python sequence, *obj*, smaller than :cdata:`NPY_MAXDIMS`
- to a C-array of :ctype:`npy_intp`. The Python object could also be a
+ Convert any Python sequence, *obj*, smaller than :c:data:`NPY_MAXDIMS`
+ to a C-array of :c:type:`npy_intp`. The Python object could also be a
single number. The *seq* variable is a pointer to a structure with
members ptr and len. On successful return, *seq* ->ptr contains a
pointer to memory that must be freed to avoid a memory leak. The
@@ -2767,83 +2767,83 @@ to.
conveniently used for sequences intended to be interpreted as
array shapes.
-.. cfunction:: int PyArray_BufferConverter(PyObject* obj, PyArray_Chunk* buf)
+.. c:function:: int PyArray_BufferConverter(PyObject* obj, PyArray_Chunk* buf)
Convert any Python object, *obj*, with a (single-segment) buffer
interface to a variable with members that detail the object's use
of its chunk of memory. The *buf* variable is a pointer to a
structure with base, ptr, len, and flags members. The
- :ctype:`PyArray_Chunk` structure is binary compatibile with the
+ :c:type:`PyArray_Chunk` structure is binary compatibile with the
Python's buffer object (through its len member on 32-bit platforms
and its ptr member on 64-bit platforms or in Python 2.5). On
return, the base member is set to *obj* (or its base if *obj* is
already a buffer object pointing to another object). If you need
to hold on to the memory be sure to INCREF the base member. The
chunk of memory is pointed to by *buf* ->ptr member and has length
- *buf* ->len. The flags member of *buf* is :cdata:`NPY_BEHAVED_RO` with
- the :cdata:`NPY_ARRAY_WRITEABLE` flag set if *obj* has a writeable buffer
+ *buf* ->len. The flags member of *buf* is :c:data:`NPY_BEHAVED_RO` with
+ the :c:data:`NPY_ARRAY_WRITEABLE` flag set if *obj* has a writeable buffer
interface.
-.. cfunction:: int PyArray_AxisConverter(PyObject \* obj, int* axis)
+.. c:function:: int PyArray_AxisConverter(PyObject \* obj, int* axis)
Convert a Python object, *obj*, representing an axis argument to
the proper value for passing to the functions that take an integer
axis. Specifically, if *obj* is None, *axis* is set to
- :cdata:`NPY_MAXDIMS` which is interpreted correctly by the C-API
+ :c:data:`NPY_MAXDIMS` which is interpreted correctly by the C-API
functions that take axis arguments.
-.. cfunction:: int PyArray_BoolConverter(PyObject* obj, Bool* value)
+.. c:function:: int PyArray_BoolConverter(PyObject* obj, Bool* value)
- Convert any Python object, *obj*, to :cdata:`NPY_TRUE` or
- :cdata:`NPY_FALSE`, and place the result in *value*.
+ Convert any Python object, *obj*, to :c:data:`NPY_TRUE` or
+ :c:data:`NPY_FALSE`, and place the result in *value*.
-.. cfunction:: int PyArray_ByteorderConverter(PyObject* obj, char* endian)
+.. c:function:: int PyArray_ByteorderConverter(PyObject* obj, char* endian)
Convert Python strings into the corresponding byte-order
character:
'>', '<', 's', '=', or '\|'.
-.. cfunction:: int PyArray_SortkindConverter(PyObject* obj, NPY_SORTKIND* sort)
+.. c:function:: int PyArray_SortkindConverter(PyObject* obj, NPY_SORTKIND* sort)
- Convert Python strings into one of :cdata:`NPY_QUICKSORT` (starts
- with 'q' or 'Q') , :cdata:`NPY_HEAPSORT` (starts with 'h' or 'H'),
- or :cdata:`NPY_MERGESORT` (starts with 'm' or 'M').
+ Convert Python strings into one of :c:data:`NPY_QUICKSORT` (starts
+ with 'q' or 'Q') , :c:data:`NPY_HEAPSORT` (starts with 'h' or 'H'),
+ or :c:data:`NPY_MERGESORT` (starts with 'm' or 'M').
-.. cfunction:: int PyArray_SearchsideConverter(PyObject* obj, NPY_SEARCHSIDE* side)
+.. c:function:: int PyArray_SearchsideConverter(PyObject* obj, NPY_SEARCHSIDE* side)
- Convert Python strings into one of :cdata:`NPY_SEARCHLEFT` (starts with 'l'
- or 'L'), or :cdata:`NPY_SEARCHRIGHT` (starts with 'r' or 'R').
+ Convert Python strings into one of :c:data:`NPY_SEARCHLEFT` (starts with 'l'
+ or 'L'), or :c:data:`NPY_SEARCHRIGHT` (starts with 'r' or 'R').
-.. cfunction:: int PyArray_OrderConverter(PyObject* obj, NPY_ORDER* order)
+.. c:function:: int PyArray_OrderConverter(PyObject* obj, NPY_ORDER* order)
- Convert the Python strings 'C', 'F', 'A', and 'K' into the :ctype:`NPY_ORDER`
- enumeration :cdata:`NPY_CORDER`, :cdata:`NPY_FORTRANORDER`,
- :cdata:`NPY_ANYORDER`, and :cdata:`NPY_KEEPORDER`.
+ Convert the Python strings 'C', 'F', 'A', and 'K' into the :c:type:`NPY_ORDER`
+ enumeration :c:data:`NPY_CORDER`, :c:data:`NPY_FORTRANORDER`,
+ :c:data:`NPY_ANYORDER`, and :c:data:`NPY_KEEPORDER`.
-.. cfunction:: int PyArray_CastingConverter(PyObject* obj, NPY_CASTING* casting)
+.. c:function:: int PyArray_CastingConverter(PyObject* obj, NPY_CASTING* casting)
Convert the Python strings 'no', 'equiv', 'safe', 'same_kind', and
- 'unsafe' into the :ctype:`NPY_CASTING` enumeration :cdata:`NPY_NO_CASTING`,
- :cdata:`NPY_EQUIV_CASTING`, :cdata:`NPY_SAFE_CASTING`,
- :cdata:`NPY_SAME_KIND_CASTING`, and :cdata:`NPY_UNSAFE_CASTING`.
+ 'unsafe' into the :c:type:`NPY_CASTING` enumeration :c:data:`NPY_NO_CASTING`,
+ :c:data:`NPY_EQUIV_CASTING`, :c:data:`NPY_SAFE_CASTING`,
+ :c:data:`NPY_SAME_KIND_CASTING`, and :c:data:`NPY_UNSAFE_CASTING`.
-.. cfunction:: int PyArray_ClipmodeConverter(PyObject* object, NPY_CLIPMODE* val)
+.. c:function:: int PyArray_ClipmodeConverter(PyObject* object, NPY_CLIPMODE* val)
Convert the Python strings 'clip', 'wrap', and 'raise' into the
- :ctype:`NPY_CLIPMODE` enumeration :cdata:`NPY_CLIP`, :cdata:`NPY_WRAP`,
- and :cdata:`NPY_RAISE`.
+ :c:type:`NPY_CLIPMODE` enumeration :c:data:`NPY_CLIP`, :c:data:`NPY_WRAP`,
+ and :c:data:`NPY_RAISE`.
-.. cfunction:: int PyArray_ConvertClipmodeSequence(PyObject* object, NPY_CLIPMODE* modes, int n)
+.. c:function:: int PyArray_ConvertClipmodeSequence(PyObject* object, NPY_CLIPMODE* modes, int n)
Converts either a sequence of clipmodes or a single clipmode into
- a C array of :ctype:`NPY_CLIPMODE` values. The number of clipmodes *n*
+ a C array of :c:type:`NPY_CLIPMODE` values. The number of clipmodes *n*
must be known before calling this function. This function is provided
to help functions allow a different clipmode for each dimension.
Other conversions
^^^^^^^^^^^^^^^^^
-.. cfunction:: int PyArray_PyIntAsInt(PyObject* op)
+.. c:function:: int PyArray_PyIntAsInt(PyObject* op)
Convert all kinds of Python objects (including arrays and array
scalars) to a standard integer. On error, -1 is returned and an
@@ -2853,27 +2853,27 @@ Other conversions
#define error_converting(x) (((x) == -1) && PyErr_Occurred()
-.. cfunction:: npy_intp PyArray_PyIntAsIntp(PyObject* op)
+.. c:function:: npy_intp PyArray_PyIntAsIntp(PyObject* op)
Convert all kinds of Python objects (including arrays and array
scalars) to a (platform-pointer-sized) integer. On error, -1 is
returned and an exception set.
-.. cfunction:: int PyArray_IntpFromSequence(PyObject* seq, npy_intp* vals, int maxvals)
+.. c:function:: int PyArray_IntpFromSequence(PyObject* seq, npy_intp* vals, int maxvals)
Convert any Python sequence (or single Python number) passed in as
*seq* to (up to) *maxvals* pointer-sized integers and place them
in the *vals* array. The sequence can be smaller then *maxvals* as
the number of converted objects is returned.
-.. cfunction:: int PyArray_TypestrConvert(int itemsize, int gentype)
+.. c:function:: int PyArray_TypestrConvert(int itemsize, int gentype)
Convert typestring characters (with *itemsize*) to basic
enumerated data types. The typestring character corresponding to
signed and unsigned integers, floating point numbers, and
complex-floating point numbers are recognized and converted. Other
values of gentype are returned. This function can be used to
- convert, for example, the string 'f4' to :cdata:`NPY_FLOAT32`.
+ convert, for example, the string 'f4' to :c:data:`NPY_FLOAT32`.
Miscellaneous
@@ -2889,25 +2889,25 @@ self-contained in a single .c file, then that is all that needs to be
done. If, however, the extension module involves multiple files where
the C-API is needed then some additional steps must be taken.
-.. cfunction:: void import_array(void)
+.. c:function:: void import_array(void)
This function must be called in the initialization section of a
module that will make use of the C-API. It imports the module
where the function-pointer table is stored and points the correct
variable to it.
-.. cmacro:: PY_ARRAY_UNIQUE_SYMBOL
+.. c:macro:: PY_ARRAY_UNIQUE_SYMBOL
-.. cmacro:: NO_IMPORT_ARRAY
+.. c:macro:: NO_IMPORT_ARRAY
Using these #defines you can use the C-API in multiple files for a
single extension module. In each file you must define
- :cmacro:`PY_ARRAY_UNIQUE_SYMBOL` to some name that will hold the
+ :c:macro:`PY_ARRAY_UNIQUE_SYMBOL` to some name that will hold the
C-API (*e.g.* myextension_ARRAY_API). This must be done **before**
including the numpy/arrayobject.h file. In the module
intialization routine you call ``import_array`` (). In addition,
in the files that do not have the module initialization
- sub_routine define :cmacro:`NO_IMPORT_ARRAY` prior to including
+ sub_routine define :c:macro:`NO_IMPORT_ARRAY` prior to including
numpy/arrayobject.h.
Suppose I have two files coolmodule.c and coolhelper.c which need
@@ -2942,18 +2942,18 @@ even runtime. For example, if you build an extension using a function available
only for numpy >= 1.3.0, and you import the extension later with numpy 1.2, you
will not get an import error (but almost certainly a segmentation fault when
calling the function). That's why several functions are provided to check for
-numpy versions. The macros :cdata:`NPY_VERSION` and
-:cdata:`NPY_FEATURE_VERSION` corresponds to the numpy version used to build the
+numpy versions. The macros :c:data:`NPY_VERSION` and
+:c:data:`NPY_FEATURE_VERSION` corresponds to the numpy version used to build the
extension, whereas the versions returned by the functions
PyArray_GetNDArrayCVersion and PyArray_GetNDArrayCFeatureVersion corresponds to
the runtime numpy's version.
The rules for ABI and API compatibilities can be summarized as follows:
- * Whenever :cdata:`NPY_VERSION` != PyArray_GetNDArrayCVersion, the
+ * Whenever :c:data:`NPY_VERSION` != PyArray_GetNDArrayCVersion, the
extension has to be recompiled (ABI incompatibility).
- * :cdata:`NPY_VERSION` == PyArray_GetNDArrayCVersion and
- :cdata:`NPY_FEATURE_VERSION` <= PyArray_GetNDArrayCFeatureVersion means
+ * :c:data:`NPY_VERSION` == PyArray_GetNDArrayCVersion and
+ :c:data:`NPY_FEATURE_VERSION` <= PyArray_GetNDArrayCFeatureVersion means
backward compatible changes.
ABI incompatibility is automatically detected in every numpy's version. API
@@ -2961,27 +2961,27 @@ incompatibility detection was added in numpy 1.4.0. If you want to supported
many different numpy versions with one extension binary, you have to build your
extension with the lowest NPY_FEATURE_VERSION as possible.
-.. cfunction:: unsigned int PyArray_GetNDArrayCVersion(void)
+.. c:function:: unsigned int PyArray_GetNDArrayCVersion(void)
- This just returns the value :cdata:`NPY_VERSION`. :cdata:`NPY_VERSION`
+ This just returns the value :c:data:`NPY_VERSION`. :c:data:`NPY_VERSION`
changes whenever a backward incompatible change at the ABI level. Because
it is in the C-API, however, comparing the output of this function from the
value defined in the current header gives a way to test if the C-API has
changed thus requiring a re-compilation of extension modules that use the
C-API. This is automatically checked in the function import_array.
-.. cfunction:: unsigned int PyArray_GetNDArrayCFeatureVersion(void)
+.. c:function:: unsigned int PyArray_GetNDArrayCFeatureVersion(void)
.. versionadded:: 1.4.0
- This just returns the value :cdata:`NPY_FEATURE_VERSION`.
- :cdata:`NPY_FEATURE_VERSION` changes whenever the API changes (e.g. a
+ This just returns the value :c:data:`NPY_FEATURE_VERSION`.
+ :c:data:`NPY_FEATURE_VERSION` changes whenever the API changes (e.g. a
function is added). A changed value does not always require a recompile.
Internal Flexibility
^^^^^^^^^^^^^^^^^^^^
-.. cfunction:: int PyArray_SetNumericOps(PyObject* dict)
+.. c:function:: int PyArray_SetNumericOps(PyObject* dict)
NumPy stores an internal table of Python callable objects that are
used to implement arithmetic operations for arrays as well as
@@ -3012,13 +3012,13 @@ Internal Flexibility
setting a Python Error) if one of the objects being assigned is not
callable.
-.. cfunction:: PyObject* PyArray_GetNumericOps(void)
+.. c:function:: PyObject* PyArray_GetNumericOps(void)
Return a Python dictionary containing the callable Python objects
stored in the the internal arithmetic operation table. The keys of
- this dictionary are given in the explanation for :cfunc:`PyArray_SetNumericOps`.
+ this dictionary are given in the explanation for :c:func:`PyArray_SetNumericOps`.
-.. cfunction:: void PyArray_SetStringFunction(PyObject* op, int repr)
+.. c:function:: void PyArray_SetStringFunction(PyObject* op, int repr)
This function allows you to alter the tp_str and tp_repr methods
of the array object to any Python function. Thus you can alter
@@ -3034,39 +3034,39 @@ Internal Flexibility
Memory management
^^^^^^^^^^^^^^^^^
-.. cfunction:: char* PyDataMem_NEW(size_t nbytes)
+.. c:function:: char* PyDataMem_NEW(size_t nbytes)
-.. cfunction:: PyDataMem_FREE(char* ptr)
+.. c:function:: PyDataMem_FREE(char* ptr)
-.. cfunction:: char* PyDataMem_RENEW(void * ptr, size_t newbytes)
+.. c:function:: char* PyDataMem_RENEW(void * ptr, size_t newbytes)
Macros to allocate, free, and reallocate memory. These macros are used
internally to create arrays.
-.. cfunction:: npy_intp* PyDimMem_NEW(nd)
+.. c:function:: npy_intp* PyDimMem_NEW(nd)
-.. cfunction:: PyDimMem_FREE(npy_intp* ptr)
+.. c:function:: PyDimMem_FREE(npy_intp* ptr)
-.. cfunction:: npy_intp* PyDimMem_RENEW(npy_intp* ptr, npy_intp newnd)
+.. c:function:: npy_intp* PyDimMem_RENEW(npy_intp* ptr, npy_intp newnd)
Macros to allocate, free, and reallocate dimension and strides memory.
-.. cfunction:: PyArray_malloc(nbytes)
+.. c:function:: PyArray_malloc(nbytes)
-.. cfunction:: PyArray_free(ptr)
+.. c:function:: PyArray_free(ptr)
-.. cfunction:: PyArray_realloc(ptr, nbytes)
+.. c:function:: PyArray_realloc(ptr, nbytes)
These macros use different memory allocators, depending on the
- constant :cdata:`NPY_USE_PYMEM`. The system malloc is used when
- :cdata:`NPY_USE_PYMEM` is 0, if :cdata:`NPY_USE_PYMEM` is 1, then
+ constant :c:data:`NPY_USE_PYMEM`. The system malloc is used when
+ :c:data:`NPY_USE_PYMEM` is 0, if :c:data:`NPY_USE_PYMEM` is 1, then
the Python memory allocator is used.
Threading support
^^^^^^^^^^^^^^^^^
-These macros are only meaningful if :cdata:`NPY_ALLOW_THREADS`
+These macros are only meaningful if :c:data:`NPY_ALLOW_THREADS`
evaluates True during compilation of the extension module. Otherwise,
these macros are equivalent to whitespace. Python uses a single Global
Interpreter Lock (GIL) for each Python process so that only a single
@@ -3077,10 +3077,10 @@ variables), the GIL should be released so that other Python threads
can run while the time-consuming calculations are performed. This can
be accomplished using two groups of macros. Typically, if one macro in
a group is used in a code block, all of them must be used in the same
-code block. Currently, :cdata:`NPY_ALLOW_THREADS` is defined to the
-python-defined :cdata:`WITH_THREADS` constant unless the environment
-variable :cdata:`NPY_NOSMP` is set in which case
-:cdata:`NPY_ALLOW_THREADS` is defined to be 0.
+code block. Currently, :c:data:`NPY_ALLOW_THREADS` is defined to the
+python-defined :c:data:`WITH_THREADS` constant unless the environment
+variable :c:data:`NPY_NOSMP` is set in which case
+:c:data:`NPY_ALLOW_THREADS` is defined to be 0.
Group 1
"""""""
@@ -3089,51 +3089,51 @@ Group 1
use any Python C-API calls. Thus, the GIL should be released during
its calculation.
- .. cmacro:: NPY_BEGIN_ALLOW_THREADS
+ .. c:macro:: NPY_BEGIN_ALLOW_THREADS
- Equivalent to :cmacro:`Py_BEGIN_ALLOW_THREADS` except it uses
- :cdata:`NPY_ALLOW_THREADS` to determine if the macro if
+ Equivalent to :c:macro:`Py_BEGIN_ALLOW_THREADS` except it uses
+ :c:data:`NPY_ALLOW_THREADS` to determine if the macro if
replaced with white-space or not.
- .. cmacro:: NPY_END_ALLOW_THREADS
+ .. c:macro:: NPY_END_ALLOW_THREADS
- Equivalent to :cmacro:`Py_END_ALLOW_THREADS` except it uses
- :cdata:`NPY_ALLOW_THREADS` to determine if the macro if
+ Equivalent to :c:macro:`Py_END_ALLOW_THREADS` except it uses
+ :c:data:`NPY_ALLOW_THREADS` to determine if the macro if
replaced with white-space or not.
- .. cmacro:: NPY_BEGIN_THREADS_DEF
+ .. c:macro:: NPY_BEGIN_THREADS_DEF
Place in the variable declaration area. This macro sets up the
variable needed for storing the Python state.
- .. cmacro:: NPY_BEGIN_THREADS
+ .. c:macro:: NPY_BEGIN_THREADS
Place right before code that does not need the Python
interpreter (no Python C-API calls). This macro saves the
Python state and releases the GIL.
- .. cmacro:: NPY_END_THREADS
+ .. c:macro:: NPY_END_THREADS
Place right after code that does not need the Python
interpreter. This macro acquires the GIL and restores the
Python state from the saved variable.
- .. cfunction:: NPY_BEGIN_THREADS_DESCR(PyArray_Descr *dtype)
+ .. c:function:: NPY_BEGIN_THREADS_DESCR(PyArray_Descr *dtype)
Useful to release the GIL only if *dtype* does not contain
arbitrary Python objects which may need the Python interpreter
during execution of the loop. Equivalent to
- .. cfunction:: NPY_END_THREADS_DESCR(PyArray_Descr *dtype)
+ .. c:function:: NPY_END_THREADS_DESCR(PyArray_Descr *dtype)
Useful to regain the GIL in situations where it was released
using the BEGIN form of this macro.
- .. cfunction:: NPY_BEGIN_THREADS_THRESHOLDED(int loop_size)
+ .. c:function:: NPY_BEGIN_THREADS_THRESHOLDED(int loop_size)
Useful to release the GIL only if *loop_size* exceeds a
minimum threshold, currently set to 500. Should be matched
- with a .. cmacro::`NPY_END_THREADS` to regain the GIL.
+ with a .. c:macro::`NPY_END_THREADS` to regain the GIL.
Group 2
"""""""
@@ -3146,17 +3146,17 @@ Group 2
essentially a reverse of the previous three (acquire the LOCK saving
what state it had) and then re-release it with the saved state.
- .. cmacro:: NPY_ALLOW_C_API_DEF
+ .. c:macro:: NPY_ALLOW_C_API_DEF
Place in the variable declaration area to set up the necessary
variable.
- .. cmacro:: NPY_ALLOW_C_API
+ .. c:macro:: NPY_ALLOW_C_API
Place before code that needs to call the Python C-API (when it is
known that the GIL has already been released).
- .. cmacro:: NPY_DISABLE_C_API
+ .. c:macro:: NPY_DISABLE_C_API
Place after code that needs to call the Python C-API (to re-release
the GIL).
@@ -3169,38 +3169,38 @@ Group 2
Priority
^^^^^^^^
-.. cvar:: NPY_PRIORITY
+.. c:var:: NPY_PRIORITY
Default priority for arrays.
-.. cvar:: NPY_SUBTYPE_PRIORITY
+.. c:var:: NPY_SUBTYPE_PRIORITY
Default subtype priority.
-.. cvar:: NPY_SCALAR_PRIORITY
+.. c:var:: NPY_SCALAR_PRIORITY
Default scalar priority (very small)
-.. cfunction:: double PyArray_GetPriority(PyObject* obj, double def)
+.. c:function:: double PyArray_GetPriority(PyObject* obj, double def)
Return the :obj:`__array_priority__` attribute (converted to a
double) of *obj* or *def* if no attribute of that name
exists. Fast returns that avoid the attribute lookup are provided
- for objects of type :cdata:`PyArray_Type`.
+ for objects of type :c:data:`PyArray_Type`.
Default buffers
^^^^^^^^^^^^^^^
-.. cvar:: NPY_BUFSIZE
+.. c:var:: NPY_BUFSIZE
Default size of the user-settable internal buffers.
-.. cvar:: NPY_MIN_BUFSIZE
+.. c:var:: NPY_MIN_BUFSIZE
Smallest size of user-settable internal buffers.
-.. cvar:: NPY_MAX_BUFSIZE
+.. c:var:: NPY_MAX_BUFSIZE
Largest size allowed for the user-settable buffers.
@@ -3208,158 +3208,158 @@ Default buffers
Other constants
^^^^^^^^^^^^^^^
-.. cvar:: NPY_NUM_FLOATTYPE
+.. c:var:: NPY_NUM_FLOATTYPE
The number of floating-point types
-.. cvar:: NPY_MAXDIMS
+.. c:var:: NPY_MAXDIMS
The maximum number of dimensions allowed in arrays.
-.. cvar:: NPY_VERSION
+.. c:var:: NPY_VERSION
The current version of the ndarray object (check to see if this
variable is defined to guarantee the numpy/arrayobject.h header is
being used).
-.. cvar:: NPY_FALSE
+.. c:var:: NPY_FALSE
Defined as 0 for use with Bool.
-.. cvar:: NPY_TRUE
+.. c:var:: NPY_TRUE
Defined as 1 for use with Bool.
-.. cvar:: NPY_FAIL
+.. c:var:: NPY_FAIL
The return value of failed converter functions which are called using
- the "O&" syntax in :cfunc:`PyArg_ParseTuple`-like functions.
+ the "O&" syntax in :c:func:`PyArg_ParseTuple`-like functions.
-.. cvar:: NPY_SUCCEED
+.. c:var:: NPY_SUCCEED
The return value of successful converter functions which are called
- using the "O&" syntax in :cfunc:`PyArg_ParseTuple`-like functions.
+ using the "O&" syntax in :c:func:`PyArg_ParseTuple`-like functions.
Miscellaneous Macros
^^^^^^^^^^^^^^^^^^^^
-.. cfunction:: PyArray_SAMESHAPE(a1, a2)
+.. c:function:: PyArray_SAMESHAPE(a1, a2)
Evaluates as True if arrays *a1* and *a2* have the same shape.
-.. cfunction:: PyArray_MAX(a,b)
+.. c:function:: PyArray_MAX(a,b)
Returns the maximum of *a* and *b*. If (*a*) or (*b*) are
expressions they are evaluated twice.
-.. cfunction:: PyArray_MIN(a,b)
+.. c:function:: PyArray_MIN(a,b)
Returns the minimum of *a* and *b*. If (*a*) or (*b*) are
expressions they are evaluated twice.
-.. cfunction:: PyArray_CLT(a,b)
+.. c:function:: PyArray_CLT(a,b)
-.. cfunction:: PyArray_CGT(a,b)
+.. c:function:: PyArray_CGT(a,b)
-.. cfunction:: PyArray_CLE(a,b)
+.. c:function:: PyArray_CLE(a,b)
-.. cfunction:: PyArray_CGE(a,b)
+.. c:function:: PyArray_CGE(a,b)
-.. cfunction:: PyArray_CEQ(a,b)
+.. c:function:: PyArray_CEQ(a,b)
-.. cfunction:: PyArray_CNE(a,b)
+.. c:function:: PyArray_CNE(a,b)
Implements the complex comparisons between two complex numbers
(structures with a real and imag member) using NumPy's definition
of the ordering which is lexicographic: comparing the real parts
first and then the complex parts if the real parts are equal.
-.. cfunction:: PyArray_REFCOUNT(PyObject* op)
+.. c:function:: PyArray_REFCOUNT(PyObject* op)
Returns the reference count of any Python object.
-.. cfunction:: PyArray_XDECREF_ERR(PyObject \*obj)
+.. c:function:: PyArray_XDECREF_ERR(PyObject \*obj)
- DECREF's an array object which may have the :cdata:`NPY_ARRAY_UPDATEIFCOPY`
+ DECREF's an array object which may have the :c:data:`NPY_ARRAY_UPDATEIFCOPY`
flag set without causing the contents to be copied back into the
- original array. Resets the :cdata:`NPY_ARRAY_WRITEABLE` flag on the base
+ original array. Resets the :c:data:`NPY_ARRAY_WRITEABLE` flag on the base
object. This is useful for recovering from an error condition when
- :cdata:`NPY_ARRAY_UPDATEIFCOPY` is used.
+ :c:data:`NPY_ARRAY_UPDATEIFCOPY` is used.
Enumerated Types
^^^^^^^^^^^^^^^^
-.. ctype:: NPY_SORTKIND
+.. c:type:: NPY_SORTKIND
- A special variable-type which can take on the values :cdata:`NPY_{KIND}`
+ A special variable-type which can take on the values :c:data:`NPY_{KIND}`
where ``{KIND}`` is
**QUICKSORT**, **HEAPSORT**, **MERGESORT**
- .. cvar:: NPY_NSORTS
+ .. c:var:: NPY_NSORTS
Defined to be the number of sorts.
-.. ctype:: NPY_SCALARKIND
+.. c:type:: NPY_SCALARKIND
A special variable type indicating the number of "kinds" of
scalars distinguished in determining scalar-coercion rules. This
- variable can take on the values :cdata:`NPY_{KIND}` where ``{KIND}`` can be
+ variable can take on the values :c:data:`NPY_{KIND}` where ``{KIND}`` can be
**NOSCALAR**, **BOOL_SCALAR**, **INTPOS_SCALAR**,
**INTNEG_SCALAR**, **FLOAT_SCALAR**, **COMPLEX_SCALAR**,
**OBJECT_SCALAR**
- .. cvar:: NPY_NSCALARKINDS
+ .. c:var:: NPY_NSCALARKINDS
Defined to be the number of scalar kinds
- (not including :cdata:`NPY_NOSCALAR`).
+ (not including :c:data:`NPY_NOSCALAR`).
-.. ctype:: NPY_ORDER
+.. c:type:: NPY_ORDER
An enumeration type indicating the element order that an array should be
interpreted in. When a brand new array is created, generally
only **NPY_CORDER** and **NPY_FORTRANORDER** are used, whereas
when one or more inputs are provided, the order can be based on them.
- .. cvar:: NPY_ANYORDER
+ .. c:var:: NPY_ANYORDER
Fortran order if all the inputs are Fortran, C otherwise.
- .. cvar:: NPY_CORDER
+ .. c:var:: NPY_CORDER
C order.
- .. cvar:: NPY_FORTRANORDER
+ .. c:var:: NPY_FORTRANORDER
Fortran order.
- .. cvar:: NPY_KEEPORDER
+ .. c:var:: NPY_KEEPORDER
An order as close to the order of the inputs as possible, even
if the input is in neither C nor Fortran order.
-.. ctype:: NPY_CLIPMODE
+.. c:type:: NPY_CLIPMODE
A variable type indicating the kind of clipping that should be
applied in certain functions.
- .. cvar:: NPY_RAISE
+ .. c:var:: NPY_RAISE
The default for most operations, raises an exception if an index
is out of bounds.
- .. cvar:: NPY_CLIP
+ .. c:var:: NPY_CLIP
Clips an index to the valid range if it is out of bounds.
- .. cvar:: NPY_WRAP
+ .. c:var:: NPY_WRAP
Wraps an index to the valid range if it is out of bounds.
-.. ctype:: NPY_CASTING
+.. c:type:: NPY_CASTING
.. versionadded:: 1.6
@@ -3367,25 +3367,25 @@ Enumerated Types
be. This is used by the iterator added in NumPy 1.6, and is intended
to be used more broadly in a future version.
- .. cvar:: NPY_NO_CASTING
+ .. c:var:: NPY_NO_CASTING
Only allow identical types.
- .. cvar:: NPY_EQUIV_CASTING
+ .. c:var:: NPY_EQUIV_CASTING
Allow identical and casts involving byte swapping.
- .. cvar:: NPY_SAFE_CASTING
+ .. c:var:: NPY_SAFE_CASTING
Only allow casts which will not cause values to be rounded,
truncated, or otherwise changed.
- .. cvar:: NPY_SAME_KIND_CASTING
+ .. c:var:: NPY_SAME_KIND_CASTING
Allow any safe casts, and casts between types of the same kind.
For example, float64 -> float32 is permitted with this rule.
- .. cvar:: NPY_UNSAFE_CASTING
+ .. c:var:: NPY_UNSAFE_CASTING
Allow any cast, no matter what kind of data loss may occur.