summaryrefslogtreecommitdiff
path: root/numpy/_array_api/_statistical_functions.py
diff options
context:
space:
mode:
authorAaron Meurer <asmeurer@gmail.com>2021-01-20 17:57:10 -0700
committerAaron Meurer <asmeurer@gmail.com>2021-01-20 17:57:10 -0700
commitad19f7f7dfcfe33fd4591f1be3b4d9d30887899a (patch)
tree2c442d50657f3141de08eee76b75d023f081e105 /numpy/_array_api/_statistical_functions.py
parent5df8ec9673a73e71554c8f53cc6edb60533c5d17 (diff)
downloadnumpy-ad19f7f7dfcfe33fd4591f1be3b4d9d30887899a.tar.gz
Use np.asarray in the array API submodule for any function that can return a scalar
This is needed to pass mypy type checks for the given type annotations.
Diffstat (limited to 'numpy/_array_api/_statistical_functions.py')
-rw-r--r--numpy/_array_api/_statistical_functions.py10
1 files changed, 5 insertions, 5 deletions
diff --git a/numpy/_array_api/_statistical_functions.py b/numpy/_array_api/_statistical_functions.py
index 020053896..e62410d01 100644
--- a/numpy/_array_api/_statistical_functions.py
+++ b/numpy/_array_api/_statistical_functions.py
@@ -8,21 +8,21 @@ def max(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keep
return np.max(x, axis=axis, keepdims=keepdims)
def mean(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
- return np.mean(x, axis=axis, keepdims=keepdims)
+ return np.asarray(np.mean(x, axis=axis, keepdims=keepdims))
def min(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
return np.min(x, axis=axis, keepdims=keepdims)
def prod(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
- return np.prod(x, axis=axis, keepdims=keepdims)
+ return np.asarray(np.prod(x, axis=axis, keepdims=keepdims))
def std(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> array:
# Note: the keyword argument correction is different here
- return np.std(x, axis=axis, ddof=correction, keepdims=keepdims)
+ return np.asarray(np.std(x, axis=axis, ddof=correction, keepdims=keepdims))
def sum(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
- return np.sum(x, axis=axis, keepdims=keepdims)
+ return np.asarray(np.sum(x, axis=axis, keepdims=keepdims))
def var(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> array:
# Note: the keyword argument correction is different here
- return np.var(x, axis=axis, ddof=correction, keepdims=keepdims)
+ return np.asarray(np.var(x, axis=axis, ddof=correction, keepdims=keepdims))