diff options
author | Eric Wieser <wieser.eric@gmail.com> | 2019-06-30 12:15:04 -0700 |
---|---|---|
committer | Eric Wieser <wieser.eric@gmail.com> | 2019-06-30 12:42:00 -0700 |
commit | 598fcb41600b809da59456d5e4a7ea549fcae139 (patch) | |
tree | fe286545e7b1b904757b1d28191bafe3ecc95377 /numpy/core | |
parent | c927298907d5dc8667385fce877ced619a9c7185 (diff) | |
download | numpy-598fcb41600b809da59456d5e4a7ea549fcae139.tar.gz |
DOC: Remove docstrings which are duplicated from `numpy/core/multiarray.py`
Diffstat (limited to 'numpy/core')
-rw-r--r-- | numpy/core/_add_newdocs.py | 156 |
1 files changed, 0 insertions, 156 deletions
diff --git a/numpy/core/_add_newdocs.py b/numpy/core/_add_newdocs.py index 8ed6e431b..c6e051a04 100644 --- a/numpy/core/_add_newdocs.py +++ b/numpy/core/_add_newdocs.py @@ -3227,87 +3227,6 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('min', """)) -add_newdoc('numpy.core.multiarray', 'shares_memory', - """ - shares_memory(a, b, max_work=None) - - Determine if two arrays share memory - - Parameters - ---------- - a, b : ndarray - Input arrays - max_work : int, optional - Effort to spend on solving the overlap problem (maximum number - of candidate solutions to consider). The following special - values are recognized: - - max_work=MAY_SHARE_EXACT (default) - The problem is solved exactly. In this case, the function returns - True only if there is an element shared between the arrays. - max_work=MAY_SHARE_BOUNDS - Only the memory bounds of a and b are checked. - - Raises - ------ - numpy.TooHardError - Exceeded max_work. - - Returns - ------- - out : bool - - See Also - -------- - may_share_memory - - Examples - -------- - >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) - False - - """) - - -add_newdoc('numpy.core.multiarray', 'may_share_memory', - """ - may_share_memory(a, b, max_work=None) - - Determine if two arrays might share memory - - A return of True does not necessarily mean that the two arrays - share any element. It just means that they *might*. - - Only the memory bounds of a and b are checked by default. - - Parameters - ---------- - a, b : ndarray - Input arrays - max_work : int, optional - Effort to spend on solving the overlap problem. See - `shares_memory` for details. Default for ``may_share_memory`` - is to do a bounds check. - - Returns - ------- - out : bool - - See Also - -------- - shares_memory - - Examples - -------- - >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) - False - >>> x = np.zeros([3, 4]) - >>> np.may_share_memory(x[:,0], x[:,1]) - True - - """) - - add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder', """ arr.newbyteorder(new_order='S') @@ -3409,81 +3328,6 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('put', """)) -add_newdoc('numpy.core.multiarray', 'copyto', - """ - copyto(dst, src, casting='same_kind', where=True) - - Copies values from one array to another, broadcasting as necessary. - - Raises a TypeError if the `casting` rule is violated, and if - `where` is provided, it selects which elements to copy. - - .. versionadded:: 1.7.0 - - Parameters - ---------- - dst : ndarray - The array into which values are copied. - src : array_like - The array from which values are copied. - casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional - Controls what kind of data casting may occur when copying. - - * 'no' means the data types should not be cast at all. - * 'equiv' means only byte-order changes are allowed. - * 'safe' means only casts which can preserve values are allowed. - * 'same_kind' means only safe casts or casts within a kind, - like float64 to float32, are allowed. - * 'unsafe' means any data conversions may be done. - where : array_like of bool, optional - A boolean array which is broadcasted to match the dimensions - of `dst`, and selects elements to copy from `src` to `dst` - wherever it contains the value True. - - """) - -add_newdoc('numpy.core.multiarray', 'putmask', - """ - putmask(a, mask, values) - - Changes elements of an array based on conditional and input values. - - Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``. - - If `values` is not the same size as `a` and `mask` then it will repeat. - This gives behavior different from ``a[mask] = values``. - - Parameters - ---------- - a : array_like - Target array. - mask : array_like - Boolean mask array. It has to be the same shape as `a`. - values : array_like - Values to put into `a` where `mask` is True. If `values` is smaller - than `a` it will be repeated. - - See Also - -------- - place, put, take, copyto - - Examples - -------- - >>> x = np.arange(6).reshape(2, 3) - >>> np.putmask(x, x>2, x**2) - >>> x - array([[ 0, 1, 2], - [ 9, 16, 25]]) - - If `values` is smaller than `a` it is repeated: - - >>> x = np.arange(5) - >>> np.putmask(x, x>1, [-33, -44]) - >>> x - array([ 0, 1, -33, -44, -33]) - - """) - add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel', """ |