diff options
author | Charles Harris <charlesr.harris@gmail.com> | 2014-07-30 15:14:11 -0600 |
---|---|---|
committer | Julian Taylor <jtaylor.debian@googlemail.com> | 2014-07-31 21:08:04 +0200 |
commit | 0b5a6645ee110a8d4c6b5defd8c01791ee48bda1 (patch) | |
tree | dad4ce39a2a89e0655c9cd4b67e66fff90892f1c /numpy/lib/tests | |
parent | b2955ede452b8ca2aae5d0b035cd19c8a3b12480 (diff) | |
download | numpy-0b5a6645ee110a8d4c6b5defd8c01791ee48bda1.tar.gz |
STY: PEP8 compliance for numpy/lib/tests.
The possibly controversial part of this is making the nested array
value lists PEP8 compliant, as there is something to be said aligning
the values for clarity. In the end, it seemed like the easiest thing
to do was to make them PEP8 compliant. The eye can get used to that.
Diffstat (limited to 'numpy/lib/tests')
-rw-r--r-- | numpy/lib/tests/test__datasource.py | 2 | ||||
-rw-r--r-- | numpy/lib/tests/test__iotools.py | 2 | ||||
-rw-r--r-- | numpy/lib/tests/test_arraypad.py | 362 | ||||
-rw-r--r-- | numpy/lib/tests/test_arraysetops.py | 4 | ||||
-rw-r--r-- | numpy/lib/tests/test_financial.py | 2 | ||||
-rw-r--r-- | numpy/lib/tests/test_index_tricks.py | 14 | ||||
-rw-r--r-- | numpy/lib/tests/test_nanfunctions.py | 24 | ||||
-rw-r--r-- | numpy/lib/tests/test_polynomial.py | 8 | ||||
-rw-r--r-- | numpy/lib/tests/test_twodim_base.py | 68 |
9 files changed, 243 insertions, 243 deletions
diff --git a/numpy/lib/tests/test__datasource.py b/numpy/lib/tests/test__datasource.py index 89198f2bf..090f71f67 100644 --- a/numpy/lib/tests/test__datasource.py +++ b/numpy/lib/tests/test__datasource.py @@ -66,7 +66,7 @@ def valid_textfile(filedir): def invalid_textfile(filedir): # Generate and return an invalid filename. - fd, path = mkstemp(suffix='.txt', prefix='dstmp_', dir=filedir) + fd, path = mkstemp(suffix='.txt', prefix='dstmp_', dir=filedir) os.close(fd) os.remove(path) return path diff --git a/numpy/lib/tests/test__iotools.py b/numpy/lib/tests/test__iotools.py index e19cf488f..4db19382a 100644 --- a/numpy/lib/tests/test__iotools.py +++ b/numpy/lib/tests/test__iotools.py @@ -287,7 +287,7 @@ class TestMiscFunctions(TestCase): ndtype = (int, float, float) assert_equal(easy_dtype(ndtype), np.dtype([('f0', int), ('f1', float), ('f2', float)])) - # As list of types w names + # As list of types w names ndtype = (int, float, float) assert_equal(easy_dtype(ndtype, names="a, b, c"), np.dtype([('a', int), ('b', float), ('c', float)])) diff --git a/numpy/lib/tests/test_arraypad.py b/numpy/lib/tests/test_arraypad.py index e07f856bb..f8ba8643a 100644 --- a/numpy/lib/tests/test_arraypad.py +++ b/numpy/lib/tests/test_arraypad.py @@ -18,7 +18,7 @@ class TestStatistic(TestCase): 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, - 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., + 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., @@ -42,7 +42,7 @@ class TestStatistic(TestCase): 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, @@ -66,16 +66,16 @@ class TestStatistic(TestCase): 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, - 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, - 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, - 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, - 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, - 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, - 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, - 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, - 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, - 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, + 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, + 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, + 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, + 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, + 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, + 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, + 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, + 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100] @@ -86,11 +86,11 @@ class TestStatistic(TestCase): a = np.arange(100) a = pad(a, (25, 20), 'minimum') b = np.array( - [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, @@ -101,8 +101,8 @@ class TestStatistic(TestCase): 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) assert_array_equal(a, b) @@ -110,11 +110,11 @@ class TestStatistic(TestCase): a = np.arange(100) + 2 a = pad(a, (25, 20), 'minimum') b = np.array( - [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, - 2, 2, 2, 2, 2, + [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, - 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, + 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, @@ -125,8 +125,8 @@ class TestStatistic(TestCase): 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] ) assert_array_equal(a, b) @@ -138,16 +138,16 @@ class TestStatistic(TestCase): 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, - 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., - 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., - 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., - 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., - 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., - 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., - 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., - 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., - 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., - 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., + 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., + 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., + 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., + 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., + 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., + 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., + 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., + 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., + 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., + 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5] @@ -158,13 +158,13 @@ class TestStatistic(TestCase): a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]]) a = pad(a, 1, 'median') b = np.array( - [[4, 4, 5, 4, 4], + [[4, 4, 5, 4, 4], - [3, 3, 1, 4, 3], - [5, 4, 5, 9, 5], - [8, 9, 8, 2, 8], + [3, 3, 1, 4, 3], + [5, 4, 5, 9, 5], + [8, 9, 8, 2, 8], - [4, 4, 5, 4, 4]] + [4, 4, 5, 4, 4]] ) assert_array_equal(a, b) @@ -172,13 +172,13 @@ class TestStatistic(TestCase): a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]]) a = pad(a.T, 1, 'median').T b = np.array( - [[5, 4, 5, 4, 5], + [[5, 4, 5, 4, 5], - [3, 3, 1, 4, 3], - [5, 4, 5, 9, 5], - [8, 9, 8, 2, 8], + [3, 3, 1, 4, 3], + [5, 4, 5, 9, 5], + [8, 9, 8, 2, 8], - [5, 4, 5, 4, 5]] + [5, 4, 5, 4, 5]] ) assert_array_equal(a, b) @@ -186,21 +186,21 @@ class TestStatistic(TestCase): a = [[4, 5, 6]] a = pad(a, (5, 7), 'mean', stat_length=2) b = np.array( - [[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], - [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], - [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], - [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], - [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], - - [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], - - [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], - [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], - [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], - [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], - [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], - [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], - [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6]] + [[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6]] ) assert_array_equal(a, b) @@ -212,16 +212,16 @@ class TestStatistic(TestCase): 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, - 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., - 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., - 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., - 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., - 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., - 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., - 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., - 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., - 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., - 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., + 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., + 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., + 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., + 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., + 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., + 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., + 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., + 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., + 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., + 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5] @@ -238,7 +238,7 @@ class TestConstant(TestCase): 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, @@ -276,7 +276,7 @@ class TestLinearRamp(TestCase): 90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0, 94.3, 89.6, 84.9, 80.2, 75.5, 70.8, 66.1, 61.4, 56.7, 52.0, - 47.3, 42.6, 37.9, 33.2, 28.5, 23.8, 19.1, 14.4, 9.7, 5.] + 47.3, 42.6, 37.9, 33.2, 28.5, 23.8, 19.1, 14.4, 9.7, 5.] ) assert_array_almost_equal(a, b, decimal=5) @@ -287,10 +287,10 @@ class TestReflect(TestCase): a = pad(a, (25, 20), 'reflect') b = np.array( [25, 24, 23, 22, 21, 20, 19, 18, 17, 16, - 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, - 5, 4, 3, 2, 1, + 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, + 5, 4, 3, 2, 1, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, @@ -310,22 +310,22 @@ class TestReflect(TestCase): a = [[4, 5, 6], [6, 7, 8]] a = pad(a, (5, 7), 'reflect') b = np.array( - [[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], - - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], - - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]] + [[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]] ) assert_array_equal(a, b) @@ -333,21 +333,21 @@ class TestReflect(TestCase): a = [[4, 5, 6]] a = pad(a, (5, 7), 'reflect') b = np.array( - [[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], - [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]] + [[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]] ) assert_array_equal(a, b) @@ -376,7 +376,7 @@ class TestWrap(TestCase): 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, @@ -387,7 +387,7 @@ class TestWrap(TestCase): 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] ) assert_array_equal(a, b) @@ -397,58 +397,58 @@ class TestWrap(TestCase): a = np.reshape(a, (3, 4)) a = pad(a, (10, 12), 'wrap') b = np.array( - [[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, - 11, 8, 9, 10, 11, 8, 9, 10, 11], - [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, - 3, 0, 1, 2, 3, 0, 1, 2, 3], - [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, - 7, 4, 5, 6, 7, 4, 5, 6, 7], - [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, - 11, 8, 9, 10, 11, 8, 9, 10, 11], - [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, - 3, 0, 1, 2, 3, 0, 1, 2, 3], - [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, - 7, 4, 5, 6, 7, 4, 5, 6, 7], - [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, - 11, 8, 9, 10, 11, 8, 9, 10, 11], - [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, - 3, 0, 1, 2, 3, 0, 1, 2, 3], - [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, - 7, 4, 5, 6, 7, 4, 5, 6, 7], - [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, - 11, 8, 9, 10, 11, 8, 9, 10, 11], - - [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, - 3, 0, 1, 2, 3, 0, 1, 2, 3], - [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, - 7, 4, 5, 6, 7, 4, 5, 6, 7], - [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, - 11, 8, 9, 10, 11, 8, 9, 10, 11], - - [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, - 3, 0, 1, 2, 3, 0, 1, 2, 3], - [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, - 7, 4, 5, 6, 7, 4, 5, 6, 7], - [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, - 11, 8, 9, 10, 11, 8, 9, 10, 11], - [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, - 3, 0, 1, 2, 3, 0, 1, 2, 3], - [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, - 7, 4, 5, 6, 7, 4, 5, 6, 7], - [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, - 11, 8, 9, 10, 11, 8, 9, 10, 11], - [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, - 3, 0, 1, 2, 3, 0, 1, 2, 3], - [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, - 7, 4, 5, 6, 7, 4, 5, 6, 7], - [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, - 11, 8, 9, 10, 11, 8, 9, 10, 11], - [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, - 3, 0, 1, 2, 3, 0, 1, 2, 3], - [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, - 7, 4, 5, 6, 7, 4, 5, 6, 7], - [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, - 11, 8, 9, 10, 11, 8, 9, 10, 11]] + [[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11]] ) assert_array_equal(a, b) @@ -469,19 +469,19 @@ class TestStatLen(TestCase): a = np.reshape(a, (6, 5)) a = pad(a, ((2, 3), (3, 2)), mode='mean', stat_length=(3,)) b = np.array( - [[6, 6, 6, 5, 6, 7, 8, 9, 8, 8], - [6, 6, 6, 5, 6, 7, 8, 9, 8, 8], - - [1, 1, 1, 0, 1, 2, 3, 4, 3, 3], - [6, 6, 6, 5, 6, 7, 8, 9, 8, 8], - [11, 11, 11, 10, 11, 12, 13, 14, 13, 13], - [16, 16, 16, 15, 16, 17, 18, 19, 18, 18], - [21, 21, 21, 20, 21, 22, 23, 24, 23, 23], - [26, 26, 26, 25, 26, 27, 28, 29, 28, 28], - - [21, 21, 21, 20, 21, 22, 23, 24, 23, 23], - [21, 21, 21, 20, 21, 22, 23, 24, 23, 23], - [21, 21, 21, 20, 21, 22, 23, 24, 23, 23]] + [[6, 6, 6, 5, 6, 7, 8, 9, 8, 8], + [6, 6, 6, 5, 6, 7, 8, 9, 8, 8], + + [1, 1, 1, 0, 1, 2, 3, 4, 3, 3], + [6, 6, 6, 5, 6, 7, 8, 9, 8, 8], + [11, 11, 11, 10, 11, 12, 13, 14, 13, 13], + [16, 16, 16, 15, 16, 17, 18, 19, 18, 18], + [21, 21, 21, 20, 21, 22, 23, 24, 23, 23], + [26, 26, 26, 25, 26, 27, 28, 29, 28, 28], + + [21, 21, 21, 20, 21, 22, 23, 24, 23, 23], + [21, 21, 21, 20, 21, 22, 23, 24, 23, 23], + [21, 21, 21, 20, 21, 22, 23, 24, 23, 23]] ) assert_array_equal(a, b) @@ -492,17 +492,17 @@ class TestEdge(TestCase): a = np.reshape(a, (4, 3)) a = pad(a, ((2, 3), (3, 2)), 'edge') b = np.array( - [[0, 0, 0, 0, 1, 2, 2, 2], - [0, 0, 0, 0, 1, 2, 2, 2], + [[0, 0, 0, 0, 1, 2, 2, 2], + [0, 0, 0, 0, 1, 2, 2, 2], - [0, 0, 0, 0, 1, 2, 2, 2], - [3, 3, 3, 3, 4, 5, 5, 5], - [6, 6, 6, 6, 7, 8, 8, 8], - [9, 9, 9, 9, 10, 11, 11, 11], + [0, 0, 0, 0, 1, 2, 2, 2], + [3, 3, 3, 3, 4, 5, 5, 5], + [6, 6, 6, 6, 7, 8, 8, 8], + [9, 9, 9, 9, 10, 11, 11, 11], - [9, 9, 9, 9, 10, 11, 11, 11], - [9, 9, 9, 9, 10, 11, 11, 11], - [9, 9, 9, 9, 10, 11, 11, 11]] + [9, 9, 9, 9, 10, 11, 11, 11], + [9, 9, 9, 9, 10, 11, 11, 11], + [9, 9, 9, 9, 10, 11, 11, 11]] ) assert_array_equal(a, b) diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py index d2638e4b9..e83f8552e 100644 --- a/numpy/lib/tests/test_arraysetops.py +++ b/numpy/lib/tests/test_arraysetops.py @@ -96,8 +96,8 @@ class TestSetOps(TestCase): check_all(aa, bb, i1, i2, c, dt) # test for ticket #2799 - aa = [1.+0.j, 1- 1.j, 1] - assert_array_equal(np.unique(aa), [ 1.-1.j, 1.+0.j]) + aa = [1. + 0.j, 1 - 1.j, 1] + assert_array_equal(np.unique(aa), [1. - 1.j, 1. + 0.j]) # test for ticket #4785 a = [(1, 2), (1, 2), (2, 3)] diff --git a/numpy/lib/tests/test_financial.py b/numpy/lib/tests/test_financial.py index f02cfb36a..a4b9cfe2e 100644 --- a/numpy/lib/tests/test_financial.py +++ b/numpy/lib/tests/test_financial.py @@ -141,7 +141,7 @@ class TestFinancial(TestCase): def test_broadcast(self): assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]), - [21.5449442, 20.76156441], 4) + [21.5449442, 20.76156441], 4) assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000), [-17.29165168, -16.66666667, -16.03647345, diff --git a/numpy/lib/tests/test_index_tricks.py b/numpy/lib/tests/test_index_tricks.py index 375fd9517..97047c53a 100644 --- a/numpy/lib/tests/test_index_tricks.py +++ b/numpy/lib/tests/test_index_tricks.py @@ -229,16 +229,16 @@ def test_fill_diagonal(): def test_diag_indices(): di = diag_indices(4) - a = np.array([[1, 2, 3, 4], - [5, 6, 7, 8], - [9, 10, 11, 12], + a = np.array([[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12], [13, 14, 15, 16]]) a[di] = 100 yield (assert_array_equal, a, - np.array([[100, 2, 3, 4], - [5, 100, 7, 8], - [9, 10, 100, 12], - [13, 14, 15, 100]])) + np.array([[100, 2, 3, 4], + [5, 100, 7, 8], + [9, 10, 100, 12], + [13, 14, 15, 100]])) # Now, we create indices to manipulate a 3-d array: d3 = diag_indices(2, 3) diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py index c5af61434..3da6b5149 100644 --- a/numpy/lib/tests/test_nanfunctions.py +++ b/numpy/lib/tests/test_nanfunctions.py @@ -10,17 +10,17 @@ from numpy.testing import ( # Test data -_ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170], - [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833], - [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954], - [0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]]) +_ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170], + [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833], + [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954], + [0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]]) # Rows of _ndat with nans removed -_rdat = [np.array([ 0.6244, 0.2692, 0.0116, 0.1170]), - np.array([ 0.5351, -0.9403, 0.2100, 0.4759, 0.2833]), - np.array([ 0.1042, -0.5954]), - np.array([ 0.1610, 0.1859, 0.3146])] +_rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]), + np.array([0.5351, -0.9403, 0.2100, 0.4759, 0.2833]), + np.array([0.1042, -0.5954]), + np.array([0.1610, 0.1859, 0.3146])] class TestNanFunctions_MinMax(TestCase): @@ -205,7 +205,7 @@ class TestNanFunctions_IntTypes(TestCase): int_types = (np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64) - mat = np.array([127, 39, 93, 87, 46]) + mat = np.array([127, 39, 93, 87, 46]) def integer_arrays(self): for dtype in self.int_types: @@ -383,13 +383,13 @@ class TestNanFunctions_MeanVarStd(TestCase): def test_dtype_error(self): for f in self.nanfuncs: for dtype in [np.bool_, np.int_, np.object]: - assert_raises( TypeError, f, _ndat, axis=1, dtype=np.int) + assert_raises(TypeError, f, _ndat, axis=1, dtype=np.int) def test_out_dtype_error(self): for f in self.nanfuncs: for dtype in [np.bool_, np.int_, np.object]: out = np.empty(_ndat.shape[0], dtype=dtype) - assert_raises( TypeError, f, _ndat, axis=1, out=out) + assert_raises(TypeError, f, _ndat, axis=1, out=out) def test_keepdims(self): mat = np.eye(3) @@ -587,7 +587,7 @@ class TestNanFunctions_Median(TestCase): # Randomly set some elements to NaN: w = np.random.randint(0, d.size, size=d.size // 5) d.ravel()[w] = np.nan - d[:,0] = 1. # ensure at least one good value + d[:,0] = 1. # ensure at least one good value # use normal median without nans to compare tgt = [] for x in d: diff --git a/numpy/lib/tests/test_polynomial.py b/numpy/lib/tests/test_polynomial.py index 12d800e2e..02faa0283 100644 --- a/numpy/lib/tests/test_polynomial.py +++ b/numpy/lib/tests/test_polynomial.py @@ -121,10 +121,10 @@ class TestDocs(TestCase): assert_almost_equal(val0, cov, decimal=4) m2, cov2 = np.polyfit(x, y+err, 2, w=weights, cov=True) - assert_almost_equal([4.8927, -1.0177, 1.7768], m2, decimal=4) - val = [[8.7929, -10.0103, 0.9756], - [-10.0103, 13.6134, -1.8178], - [0.9756, -1.8178, 0.6674]] + assert_almost_equal([4.8927, -1.0177, 1.7768], m2, decimal=4) + val = [[8.7929, -10.0103, 0.9756], + [-10.0103, 13.6134, -1.8178], + [0.9756, -1.8178, 0.6674]] assert_almost_equal(val, cov2, decimal=4) # check 2D (n,1) case diff --git a/numpy/lib/tests/test_twodim_base.py b/numpy/lib/tests/test_twodim_base.py index 786993e91..e9dbef70f 100644 --- a/numpy/lib/tests/test_twodim_base.py +++ b/numpy/lib/tests/test_twodim_base.py @@ -79,12 +79,12 @@ class TestEye(TestCase): [0, 1, 0]])) def test_eye_bounds(self): - assert_equal(eye(2, 2, 1), [[0, 1], [0, 0]]) + assert_equal(eye(2, 2, 1), [[0, 1], [0, 0]]) assert_equal(eye(2, 2, -1), [[0, 0], [1, 0]]) - assert_equal(eye(2, 2, 2), [[0, 0], [0, 0]]) + assert_equal(eye(2, 2, 2), [[0, 0], [0, 0]]) assert_equal(eye(2, 2, -2), [[0, 0], [0, 0]]) - assert_equal(eye(3, 2, 2), [[0, 0], [0, 0], [0, 0]]) - assert_equal(eye(3, 2, 1), [[0, 1], [0, 0], [0, 0]]) + assert_equal(eye(3, 2, 2), [[0, 0], [0, 0], [0, 0]]) + assert_equal(eye(3, 2, 1), [[0, 1], [0, 0], [0, 0]]) assert_equal(eye(3, 2, -1), [[0, 0], [1, 0], [0, 1]]) assert_equal(eye(3, 2, -2), [[0, 0], [0, 0], [1, 0]]) assert_equal(eye(3, 2, -3), [[0, 0], [0, 0], [0, 0]]) @@ -248,13 +248,13 @@ class TestHistogram2d(TestCase): y = array([1, 1, 1, 2, 2, 2, 3, 3, 3]) H, xed, yed = histogram2d( x, y, [[1, 2, 3, 5], [1, 2, 3, 5]], normed=True) - answer = array([[1, 1, .5], - [1, 1, .5], + answer = array([[1, 1, .5], + [1, 1, .5], [.5, .5, .25]])/9. assert_array_almost_equal(H, answer, 3) def test_all_outliers(self): - r = rand(100) + 1. + 1e6 # histogramdd rounds by decimal=6 + r = rand(100) + 1. + 1e6 # histogramdd rounds by decimal=6 H, xed, yed = histogram2d(r, r, (4, 5), range=([0, 1], [0, 1])) assert_array_equal(H, 0) @@ -329,29 +329,29 @@ def test_tril_indices(): il3 = tril_indices(4, m=5) il4 = tril_indices(4, k=2, m=5) - a = np.array([[1, 2, 3, 4], - [5, 6, 7, 8], - [9, 10, 11, 12], + a = np.array([[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12], [13, 14, 15, 16]]) b = np.arange(1, 21).reshape(4, 5) # indexing: yield (assert_array_equal, a[il1], - array([1, 5, 6, 9, 10, 11, 13, 14, 15, 16])) + array([1, 5, 6, 9, 10, 11, 13, 14, 15, 16])) yield (assert_array_equal, b[il3], array([1, 6, 7, 11, 12, 13, 16, 17, 18, 19])) # And for assigning values: a[il1] = -1 yield (assert_array_equal, a, - array([[-1, 2, 3, 4], - [-1, -1, 7, 8], + array([[-1, 2, 3, 4], + [-1, -1, 7, 8], [-1, -1, -1, 12], [-1, -1, -1, -1]])) b[il3] = -1 yield (assert_array_equal, b, - array([[-1, 2, 3, 4, 5], - [-1, -1, 8, 9, 10], + array([[-1, 2, 3, 4, 5], + [-1, -1, 8, 9, 10], [-1, -1, -1, 14, 15], [-1, -1, -1, -1, 20]])) # These cover almost the whole array (two diagonals right of the main one): @@ -363,8 +363,8 @@ def test_tril_indices(): [-10, -10, -10, -10]])) b[il4] = -10 yield (assert_array_equal, b, - array([[-10, -10, -10, 4, 5], - [-10, -10, -10, -10, 10], + array([[-10, -10, -10, 4, 5], + [-10, -10, -10, -10, 10], [-10, -10, -10, -10, -10], [-10, -10, -10, -10, -10]])) @@ -376,15 +376,15 @@ class TestTriuIndices(object): iu3 = triu_indices(4, m=5) iu4 = triu_indices(4, k=2, m=5) - a = np.array([[1, 2, 3, 4], - [5, 6, 7, 8], - [9, 10, 11, 12], + a = np.array([[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12], [13, 14, 15, 16]]) b = np.arange(1, 21).reshape(4, 5) # Both for indexing: yield (assert_array_equal, a[iu1], - array([1, 2, 3, 4, 6, 7, 8, 11, 12, 16])) + array([1, 2, 3, 4, 6, 7, 8, 11, 12, 16])) yield (assert_array_equal, b[iu3], array([1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15, 19, 20])) @@ -392,13 +392,13 @@ class TestTriuIndices(object): a[iu1] = -1 yield (assert_array_equal, a, array([[-1, -1, -1, -1], - [5, -1, -1, -1], - [9, 10, -1, -1], + [5, -1, -1, -1], + [9, 10, -1, -1], [13, 14, 15, -1]])) b[iu3] = -1 yield (assert_array_equal, b, array([[-1, -1, -1, -1, -1], - [ 6, -1, -1, -1, -1], + [6, -1, -1, -1, -1], [11, 12, -1, -1, -1], [16, 17, 18, -1, -1]])) @@ -406,10 +406,10 @@ class TestTriuIndices(object): # main one): a[iu2] = -10 yield (assert_array_equal, a, - array([[-1, -1, -10, -10], - [5, -1, -1, -10], - [9, 10, -1, -1], - [13, 14, 15, -1]])) + array([[-1, -1, -10, -10], + [5, -1, -1, -10], + [9, 10, -1, -1], + [13, 14, 15, -1]])) b[iu4] = -10 yield (assert_array_equal, b, array([[-1, -1, -10, -10, -10], @@ -436,10 +436,10 @@ class TestVander(object): def test_basic(self): c = np.array([0, 1, -2, 3]) v = vander(c) - powers = np.array([[ 0, 0, 0, 0, 1], - [ 1, 1, 1, 1, 1], + powers = np.array([[0, 0, 0, 0, 1], + [1, 1, 1, 1, 1], [16, -8, 4, -2, 1], - [81, 27, 9, 3, 1]]) + [81, 27, 9, 3, 1]]) # Check default value of N: yield (assert_array_equal, v, powers[:, 1:]) # Check a range of N values, including 0 and 5 (greater than default) @@ -451,14 +451,14 @@ class TestVander(object): def test_dtypes(self): c = array([11, -12, 13], dtype=np.int8) v = vander(c) - expected = np.array([[121, 11, 1], + expected = np.array([[121, 11, 1], [144, -12, 1], - [169, 13, 1]]) + [169, 13, 1]]) yield (assert_array_equal, v, expected) c = array([1.0+1j, 1.0-1j]) v = vander(c, N=3) - expected = np.array([[ 2j, 1+1j, 1], + expected = np.array([[2j, 1+1j, 1], [-2j, 1-1j, 1]]) # The data is floating point, but the values are small integers, # so assert_array_equal *should* be safe here (rather than, say, |