diff options
author | Charles Harris <charlesr.harris@gmail.com> | 2013-06-20 20:44:54 -0600 |
---|---|---|
committer | Charles Harris <charlesr.harris@gmail.com> | 2013-08-12 22:33:55 -0600 |
commit | fcb0fef5c673ed0a5442b18bcd8c391907b4f9a7 (patch) | |
tree | 24726ff3fbb7a167a8fdf89ac5cb74792c9cc6e7 /numpy/lib | |
parent | 777b6453e166df252298a47ef4f0e867614ac94a (diff) | |
download | numpy-fcb0fef5c673ed0a5442b18bcd8c391907b4f9a7.tar.gz |
MAINT: Separate nan functions into their own module.
New files lib/nanfunctions.py and lib/tests/test_nanfunctions.py are
added and both the previous and new nan functions and tests are moved
into them.
The existing nan functions moved from lib/function_base are:
nansum, nanmin, nanmax, nanargmin, nanargmax
The added nan functions moved from core/numeric are:
nanmean, nanvar, nanstd
Diffstat (limited to 'numpy/lib')
-rw-r--r-- | numpy/lib/__init__.py | 5 | ||||
-rw-r--r-- | numpy/lib/function_base.py | 342 | ||||
-rw-r--r-- | numpy/lib/nanfunctions.py | 678 | ||||
-rw-r--r-- | numpy/lib/tests/test_function_base.py | 133 | ||||
-rw-r--r-- | numpy/lib/tests/test_nanfunctions.py | 240 |
5 files changed, 935 insertions, 463 deletions
diff --git a/numpy/lib/__init__.py b/numpy/lib/__init__.py index 12acae95b..64a8550c6 100644 --- a/numpy/lib/__init__.py +++ b/numpy/lib/__init__.py @@ -1,11 +1,14 @@ from __future__ import division, absolute_import, print_function +import math + from .info import __doc__ from numpy.version import version as __version__ from .type_check import * from .index_tricks import * from .function_base import * +from .nanfunctions import * from .shape_base import * from .stride_tricks import * from .twodim_base import * @@ -18,7 +21,6 @@ from .utils import * from .arraysetops import * from .npyio import * from .financial import * -import math from .arrayterator import * from .arraypad import * @@ -36,6 +38,7 @@ __all__ += utils.__all__ __all__ += arraysetops.__all__ __all__ += npyio.__all__ __all__ += financial.__all__ +__all__ += nanfunctions.__all__ from numpy.testing import Tester test = Tester().test diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index b3b5ef735..9336579af 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -1,15 +1,14 @@ from __future__ import division, absolute_import, print_function __docformat__ = "restructuredtext en" -__all__ = ['select', 'piecewise', 'trim_zeros', 'copy', 'iterable', - 'percentile', 'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', - 'disp', 'extract', 'place', 'nansum', 'nanmax', 'nanargmax', - 'nanargmin', 'nanmin', 'vectorize', 'asarray_chkfinite', 'average', - 'histogram', 'histogramdd', 'bincount', 'digitize', 'cov', - 'corrcoef', 'msort', 'median', 'sinc', 'hamming', 'hanning', - 'bartlett', 'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', - 'add_docstring', 'meshgrid', 'delete', 'insert', 'append', 'interp', - 'add_newdoc_ufunc'] +__all__ = [ + 'select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile', + 'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp', + 'extract', 'place', 'vectorize', 'asarray_chkfinite', 'average', + 'histogram', 'histogramdd', 'bincount', 'digitize', 'cov', 'corrcoef', + 'msort', 'median', 'sinc', 'hamming', 'hanning', 'bartlett', + 'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring', + 'meshgrid', 'delete', 'insert', 'append', 'interp', 'add_newdoc_ufunc'] import warnings import types @@ -1361,331 +1360,6 @@ def place(arr, mask, vals): """ return _insert(arr, mask, vals) -def _nanop(op, fill, a, axis=None): - """ - General operation on arrays with not-a-number values. - - Parameters - ---------- - op : callable - Operation to perform. - fill : float - NaN values are set to fill before doing the operation. - a : array-like - Input array. - axis : {int, None}, optional - Axis along which the operation is computed. - By default the input is flattened. - - Returns - ------- - y : {ndarray, scalar} - Processed data. - - """ - y = array(a, subok=True) - - # We only need to take care of NaN's in floating point arrays - dt = y.dtype - if np.issubdtype(dt, np.integer) or np.issubdtype(dt, np.bool_): - return op(y, axis=axis) - - mask = isnan(a) - # y[mask] = fill - # We can't use fancy indexing here as it'll mess w/ MaskedArrays - # Instead, let's fill the array directly... - np.copyto(y, fill, where=mask) - res = op(y, axis=axis) - mask_all_along_axis = mask.all(axis=axis) - - # Along some axes, only nan's were encountered. As such, any values - # calculated along that axis should be set to nan. - if mask_all_along_axis.any(): - if np.isscalar(res): - res = np.nan - else: - res[mask_all_along_axis] = np.nan - - return res - -def nansum(a, axis=None): - """ - Return the sum of array elements over a given axis treating - Not a Numbers (NaNs) as zero. - - Parameters - ---------- - a : array_like - Array containing numbers whose sum is desired. If `a` is not an - array, a conversion is attempted. - axis : int, optional - Axis along which the sum is computed. The default is to compute - the sum of the flattened array. - - Returns - ------- - y : ndarray - An array with the same shape as a, with the specified axis removed. - If a is a 0-d array, or if axis is None, a scalar is returned with - the same dtype as `a`. - - See Also - -------- - numpy.sum : Sum across array including Not a Numbers. - isnan : Shows which elements are Not a Number (NaN). - isfinite: Shows which elements are not: Not a Number, positive and - negative infinity - - Notes - ----- - Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic - (IEEE 754). This means that Not a Number is not equivalent to infinity. - If positive or negative infinity are present the result is positive or - negative infinity. But if both positive and negative infinity are present, - the result is Not A Number (NaN). - - Arithmetic is modular when using integer types (all elements of `a` must - be finite i.e. no elements that are NaNs, positive infinity and negative - infinity because NaNs are floating point types), and no error is raised - on overflow. - - - Examples - -------- - >>> np.nansum(1) - 1 - >>> np.nansum([1]) - 1 - >>> np.nansum([1, np.nan]) - 1.0 - >>> a = np.array([[1, 1], [1, np.nan]]) - >>> np.nansum(a) - 3.0 - >>> np.nansum(a, axis=0) - array([ 2., 1.]) - - When positive infinity and negative infinity are present - - >>> np.nansum([1, np.nan, np.inf]) - inf - >>> np.nansum([1, np.nan, np.NINF]) - -inf - >>> np.nansum([1, np.nan, np.inf, np.NINF]) - nan - - """ - return _nanop(np.sum, 0, a, axis) - -def nanmin(a, axis=None): - """ - Return the minimum of an array or minimum along an axis, ignoring any NaNs. - - Parameters - ---------- - a : array_like - Array containing numbers whose minimum is desired. If `a` is not - an array, a conversion is attempted. - axis : int, optional - Axis along which the minimum is computed. The default is to compute - the minimum of the flattened array. - - Returns - ------- - nanmin : ndarray - An array with the same shape as `a`, with the specified axis removed. - If `a` is a 0-d array, or if axis is None, an ndarray scalar is - returned. The same dtype as `a` is returned. - - See Also - -------- - nanmax : - The maximum value of an array along a given axis, ignoring any NaNs. - amin : - The minimum value of an array along a given axis, propagating any NaNs. - fmin : - Element-wise minimum of two arrays, ignoring any NaNs. - minimum : - Element-wise minimum of two arrays, propagating any NaNs. - isnan : - Shows which elements are Not a Number (NaN). - isfinite: - Shows which elements are neither NaN nor infinity. - - amax, fmax, maximum - - Notes - ----- - Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic - (IEEE 754). This means that Not a Number is not equivalent to infinity. - Positive infinity is treated as a very large number and negative infinity - is treated as a very small (i.e. negative) number. - - If the input has a integer type the function is equivalent to np.min. - - Examples - -------- - >>> a = np.array([[1, 2], [3, np.nan]]) - >>> np.nanmin(a) - 1.0 - >>> np.nanmin(a, axis=0) - array([ 1., 2.]) - >>> np.nanmin(a, axis=1) - array([ 1., 3.]) - - When positive infinity and negative infinity are present: - - >>> np.nanmin([1, 2, np.nan, np.inf]) - 1.0 - >>> np.nanmin([1, 2, np.nan, np.NINF]) - -inf - - """ - a = np.asanyarray(a) - if axis is not None: - return np.fmin.reduce(a, axis) - else: - return np.fmin.reduce(a.flat) - -def nanargmin(a, axis=None): - """ - Return indices of the minimum values over an axis, ignoring NaNs. - - Parameters - ---------- - a : array_like - Input data. - axis : int, optional - Axis along which to operate. By default flattened input is used. - - Returns - ------- - index_array : ndarray - An array of indices or a single index value. - - See Also - -------- - argmin, nanargmax - - Examples - -------- - >>> a = np.array([[np.nan, 4], [2, 3]]) - >>> np.argmin(a) - 0 - >>> np.nanargmin(a) - 2 - >>> np.nanargmin(a, axis=0) - array([1, 1]) - >>> np.nanargmin(a, axis=1) - array([1, 0]) - - """ - return _nanop(np.argmin, np.inf, a, axis) - -def nanmax(a, axis=None): - """ - Return the maximum of an array or maximum along an axis, ignoring any NaNs. - - Parameters - ---------- - a : array_like - Array containing numbers whose maximum is desired. If `a` is not - an array, a conversion is attempted. - axis : int, optional - Axis along which the maximum is computed. The default is to compute - the maximum of the flattened array. - - Returns - ------- - nanmax : ndarray - An array with the same shape as `a`, with the specified axis removed. - If `a` is a 0-d array, or if axis is None, an ndarray scalar is - returned. The same dtype as `a` is returned. - - See Also - -------- - nanmin : - The minimum value of an array along a given axis, ignoring any NaNs. - amax : - The maximum value of an array along a given axis, propagating any NaNs. - fmax : - Element-wise maximum of two arrays, ignoring any NaNs. - maximum : - Element-wise maximum of two arrays, propagating any NaNs. - isnan : - Shows which elements are Not a Number (NaN). - isfinite: - Shows which elements are neither NaN nor infinity. - - amin, fmin, minimum - - Notes - ----- - Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic - (IEEE 754). This means that Not a Number is not equivalent to infinity. - Positive infinity is treated as a very large number and negative infinity - is treated as a very small (i.e. negative) number. - - If the input has a integer type the function is equivalent to np.max. - - Examples - -------- - >>> a = np.array([[1, 2], [3, np.nan]]) - >>> np.nanmax(a) - 3.0 - >>> np.nanmax(a, axis=0) - array([ 3., 2.]) - >>> np.nanmax(a, axis=1) - array([ 2., 3.]) - - When positive infinity and negative infinity are present: - - >>> np.nanmax([1, 2, np.nan, np.NINF]) - 2.0 - >>> np.nanmax([1, 2, np.nan, np.inf]) - inf - - """ - a = np.asanyarray(a) - if axis is not None: - return np.fmax.reduce(a, axis) - else: - return np.fmax.reduce(a.flat) - -def nanargmax(a, axis=None): - """ - Return indices of the maximum values over an axis, ignoring NaNs. - - Parameters - ---------- - a : array_like - Input data. - axis : int, optional - Axis along which to operate. By default flattened input is used. - - Returns - ------- - index_array : ndarray - An array of indices or a single index value. - - See Also - -------- - argmax, nanargmin - - Examples - -------- - >>> a = np.array([[np.nan, 4], [2, 3]]) - >>> np.argmax(a) - 0 - >>> np.nanargmax(a) - 1 - >>> np.nanargmax(a, axis=0) - array([1, 0]) - >>> np.nanargmax(a, axis=1) - array([1, 1]) - - """ - return _nanop(np.argmax, -np.inf, a, axis) - def disp(mesg, device=None, linefeed=True): """ Display a message on a device. diff --git a/numpy/lib/nanfunctions.py b/numpy/lib/nanfunctions.py new file mode 100644 index 000000000..f0e635791 --- /dev/null +++ b/numpy/lib/nanfunctions.py @@ -0,0 +1,678 @@ +"""Functions that ignore nan. + +""" +from __future__ import division, absolute_import, print_function + +import numpy as np + +__all__ = [ + 'nansum', 'nanmax', 'nanmin', 'nanargmax', 'nanargmin', 'nanmean', + 'nanvar', 'nanstd' + ] + + +def _nanmean(a, axis=None, dtype=None, out=None, keepdims=False): + # Using array() instead of asanyarray() because the former always + # makes a copy, which is important due to the copyto() action later + arr = np.array(a, subok=True) + mask = np.isnan(arr) + + # Cast bool, unsigned int, and int to float64 + if np.dtype is None and issubclass(arr.dtype.type, (np.integer, np.bool_)): + ret = np.add.reduce(arr, axis=axis, dtype='f8', + out=out, keepdims=keepdims) + else: + np.copyto(arr, 0.0, where=mask) + ret = np.add.reduce(arr, axis=axis, dtype=dtype, + out=out, keepdims=keepdims) + rcount = (~mask).sum(axis=axis) + if isinstance(ret, np.ndarray): + ret = np.true_divide(ret, rcount, out=ret, casting='unsafe', + subok=False) + else: + ret = ret / rcount + return ret + + +def _nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): + # Using array() instead of asanyarray() because the former always + # makes a copy, which is important due to the copyto() action later + arr = np.array(a, subok=True) + mask = np.isnan(arr) + + # First compute the mean, saving 'rcount' for reuse later + if dtype is None and issubclass(arr.dtype.type, (np.integer, np.bool_)): + arrmean = np.add.reduce(arr, axis=axis, dtype='f8', keepdims=True) + else: + np.copyto(arr, 0.0, where=mask) + arrmean = np.add.reduce(arr, axis=axis, dtype=dtype, keepdims=True) + rcount = (~mask).sum(axis=axis, keepdims=True) + if isinstance(arrmean, np.ndarray): + arrmean = np.true_divide(arrmean, rcount, + out=arrmean, casting='unsafe', subok=False) + else: + arrmean = arrmean / rcount + + # arr - arrmean + x = arr - arrmean + np.copyto(x, 0.0, where=mask) + + # (arr - arrmean) ** 2 + if issubclass(arr.dtype.type, np.complex_): + x = np.multiply(x, np.conjugate(x), out=x).real + else: + x = np.multiply(x, x, out=x) + + # add.reduce((arr - arrmean) ** 2, axis) + ret = np.add.reduce(x, axis=axis, dtype=dtype, out=out, keepdims=keepdims) + + # add.reduce((arr - arrmean) ** 2, axis) / (n - ddof) + if not keepdims and isinstance(rcount, np.ndarray): + rcount = rcount.squeeze(axis=axis) + rcount -= ddof + if isinstance(ret, np.ndarray): + ret = np.true_divide(ret, rcount, out=ret, casting='unsafe', subok=False) + else: + ret = ret / rcount + + return ret + + +def _nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): + ret = _nanvar(a, axis=axis, dtype=dtype, out=out, ddof=ddof, + keepdims=keepdims) + + if isinstance(ret, np.ndarray): + ret = np.sqrt(ret, out=ret) + else: + ret = np.sqrt(ret) + + return ret + + +def _nanop(op, fill, a, axis=None): + """ + General operation on arrays with not-a-number values. + + Parameters + ---------- + op : callable + Operation to perform. + fill : float + NaN values are set to fill before doing the operation. + a : array-like + Input array. + axis : {int, None}, optional + Axis along which the operation is computed. + By default the input is flattened. + + Returns + ------- + y : {ndarray, scalar} + Processed data. + + """ + y = np.array(a, subok=True) + + # We only need to take care of NaN's in floating point arrays + dt = y.dtype + if np.issubdtype(dt, np.integer) or np.issubdtype(dt, np.bool_): + return op(y, axis=axis) + + mask = np.isnan(a) + # y[mask] = fill + # We can't use fancy indexing here as it'll mess w/ MaskedArrays + # Instead, let's fill the array directly... + np.copyto(y, fill, where=mask) + res = op(y, axis=axis) + mask_all_along_axis = mask.all(axis=axis) + + # Along some axes, only nan's were encountered. As such, any values + # calculated along that axis should be set to nan. + if mask_all_along_axis.any(): + if np.isscalar(res): + res = np.nan + else: + res[mask_all_along_axis] = np.nan + + return res + + +def nansum(a, axis=None): + """ + Return the sum of array elements over a given axis treating + Not a Numbers (NaNs) as zero. + + Parameters + ---------- + a : array_like + Array containing numbers whose sum is desired. If `a` is not an + array, a conversion is attempted. + axis : int, optional + Axis along which the sum is computed. The default is to compute + the sum of the flattened array. + + Returns + ------- + y : ndarray + An array with the same shape as a, with the specified axis removed. + If a is a 0-d array, or if axis is None, a scalar is returned with + the same dtype as `a`. + + See Also + -------- + numpy.sum : Sum across array including Not a Numbers. + isnan : Shows which elements are Not a Number (NaN). + isfinite: Shows which elements are not: Not a Number, positive and + negative infinity + + Notes + ----- + Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic + (IEEE 754). This means that Not a Number is not equivalent to infinity. + If positive or negative infinity are present the result is positive or + negative infinity. But if both positive and negative infinity are present, + the result is Not A Number (NaN). + + Arithmetic is modular when using integer types (all elements of `a` must + be finite i.e. no elements that are NaNs, positive infinity and negative + infinity because NaNs are floating point types), and no error is raised + on overflow. + + + Examples + -------- + >>> np.nansum(1) + 1 + >>> np.nansum([1]) + 1 + >>> np.nansum([1, np.nan]) + 1.0 + >>> a = np.array([[1, 1], [1, np.nan]]) + >>> np.nansum(a) + 3.0 + >>> np.nansum(a, axis=0) + array([ 2., 1.]) + + When positive infinity and negative infinity are present + + >>> np.nansum([1, np.nan, np.inf]) + inf + >>> np.nansum([1, np.nan, np.NINF]) + -inf + >>> np.nansum([1, np.nan, np.inf, np.NINF]) + nan + + """ + return _nanop(np.sum, 0, a, axis) + + +def nanmin(a, axis=None): + """ + Return the minimum of an array or minimum along an axis, ignoring any NaNs. + + Parameters + ---------- + a : array_like + Array containing numbers whose minimum is desired. If `a` is not + an array, a conversion is attempted. + axis : int, optional + Axis along which the minimum is computed. The default is to compute + the minimum of the flattened array. + + Returns + ------- + nanmin : ndarray + An array with the same shape as `a`, with the specified axis removed. + If `a` is a 0-d array, or if axis is None, an ndarray scalar is + returned. The same dtype as `a` is returned. + + See Also + -------- + nanmax : + The maximum value of an array along a given axis, ignoring any NaNs. + amin : + The minimum value of an array along a given axis, propagating any NaNs. + fmin : + Element-wise minimum of two arrays, ignoring any NaNs. + minimum : + Element-wise minimum of two arrays, propagating any NaNs. + isnan : + Shows which elements are Not a Number (NaN). + isfinite: + Shows which elements are neither NaN nor infinity. + + amax, fmax, maximum + + Notes + ----- + Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic + (IEEE 754). This means that Not a Number is not equivalent to infinity. + Positive infinity is treated as a very large number and negative infinity + is treated as a very small (i.e. negative) number. + + If the input has a integer type the function is equivalent to np.min. + + Examples + -------- + >>> a = np.array([[1, 2], [3, np.nan]]) + >>> np.nanmin(a) + 1.0 + >>> np.nanmin(a, axis=0) + array([ 1., 2.]) + >>> np.nanmin(a, axis=1) + array([ 1., 3.]) + + When positive infinity and negative infinity are present: + + >>> np.nanmin([1, 2, np.nan, np.inf]) + 1.0 + >>> np.nanmin([1, 2, np.nan, np.NINF]) + -inf + + """ + a = np.asanyarray(a) + if axis is not None: + return np.fmin.reduce(a, axis) + else: + return np.fmin.reduce(a.flat) + + +def nanargmin(a, axis=None): + """ + Return indices of the minimum values over an axis, ignoring NaNs. + + Parameters + ---------- + a : array_like + Input data. + axis : int, optional + Axis along which to operate. By default flattened input is used. + + Returns + ------- + index_array : ndarray + An array of indices or a single index value. + + See Also + -------- + argmin, nanargmax + + Examples + -------- + >>> a = np.array([[np.nan, 4], [2, 3]]) + >>> np.argmin(a) + 0 + >>> np.nanargmin(a) + 2 + >>> np.nanargmin(a, axis=0) + array([1, 1]) + >>> np.nanargmin(a, axis=1) + array([1, 0]) + + """ + return _nanop(np.argmin, np.inf, a, axis) + + +def nanmax(a, axis=None): + """ + Return the maximum of an array or maximum along an axis, ignoring any NaNs. + + Parameters + ---------- + a : array_like + Array containing numbers whose maximum is desired. If `a` is not + an array, a conversion is attempted. + axis : int, optional + Axis along which the maximum is computed. The default is to compute + the maximum of the flattened array. + + Returns + ------- + nanmax : ndarray + An array with the same shape as `a`, with the specified axis removed. + If `a` is a 0-d array, or if axis is None, an ndarray scalar is + returned. The same dtype as `a` is returned. + + See Also + -------- + nanmin : + The minimum value of an array along a given axis, ignoring any NaNs. + amax : + The maximum value of an array along a given axis, propagating any NaNs. + fmax : + Element-wise maximum of two arrays, ignoring any NaNs. + maximum : + Element-wise maximum of two arrays, propagating any NaNs. + isnan : + Shows which elements are Not a Number (NaN). + isfinite: + Shows which elements are neither NaN nor infinity. + + amin, fmin, minimum + + Notes + ----- + Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic + (IEEE 754). This means that Not a Number is not equivalent to infinity. + Positive infinity is treated as a very large number and negative infinity + is treated as a very small (i.e. negative) number. + + If the input has a integer type the function is equivalent to np.max. + + Examples + -------- + >>> a = np.array([[1, 2], [3, np.nan]]) + >>> np.nanmax(a) + 3.0 + >>> np.nanmax(a, axis=0) + array([ 3., 2.]) + >>> np.nanmax(a, axis=1) + array([ 2., 3.]) + + When positive infinity and negative infinity are present: + + >>> np.nanmax([1, 2, np.nan, np.NINF]) + 2.0 + >>> np.nanmax([1, 2, np.nan, np.inf]) + inf + + """ + a = np.asanyarray(a) + if axis is not None: + return np.fmax.reduce(a, axis) + else: + return np.fmax.reduce(a.flat) + + +def nanargmax(a, axis=None): + """ + Return indices of the maximum values over an axis, ignoring NaNs. + + Parameters + ---------- + a : array_like + Input data. + axis : int, optional + Axis along which to operate. By default flattened input is used. + + Returns + ------- + index_array : ndarray + An array of indices or a single index value. + + See Also + -------- + argmax, nanargmin + + Examples + -------- + >>> a = np.array([[np.nan, 4], [2, 3]]) + >>> np.argmax(a) + 0 + >>> np.nanargmax(a) + 1 + >>> np.nanargmax(a, axis=0) + array([1, 0]) + >>> np.nanargmax(a, axis=1) + array([1, 1]) + + """ + return _nanop(np.argmax, -np.inf, a, axis) + + +def nanmean(a, axis=None, dtype=None, out=None, keepdims=False): + """ + Compute the arithmetic mean along the specified axis, ignoring NaNs. + + Returns the average of the array elements. The average is taken over + the flattened array by default, otherwise over the specified axis. + `float64` intermediate and return values are used for integer inputs. + + Parameters + ---------- + a : array_like + Array containing numbers whose mean is desired. If `a` is not an + array, a conversion is attempted. + axis : int, optional + Axis along which the means are computed. The default is to compute + the mean of the flattened array. + dtype : data-type, optional + Type to use in computing the mean. For integer inputs, the default + is `float64`; for floating point inputs, it is the same as the + input dtype. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``; if provided, it must have the same shape as the + expected output, but the type will be cast if necessary. + See `doc.ufuncs` for details. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `arr`. + + Returns + ------- + m : ndarray, see dtype parameter above + If `out=None`, returns a new array containing the mean values, + otherwise a reference to the output array is returned. + + See Also + -------- + average : Weighted average + mean : Arithmetic mean taken while not ignoring NaNs + var, nanvar + + Notes + ----- + The arithmetic mean is the sum of the non-nan elements along the axis + divided by the number of non-nan elements. + + Note that for floating-point input, the mean is computed using the + same precision the input has. Depending on the input data, this can + cause the results to be inaccurate, especially for `float32`. + Specifying a higher-precision accumulator using the `dtype` keyword + can alleviate this issue. + + Examples + -------- + >>> a = np.array([[1, np.nan], [3, 4]]) + >>> np.nanmean(a) + 2.6666666666666665 + >>> np.nanmean(a, axis=0) + array([ 2., 4.]) + >>> np.nanmean(a, axis=1) + array([ 1., 3.5]) + + """ + if not (type(a) is np.ndarray): + try: + mean = a.nanmean + return mean(axis=axis, dtype=dtype, out=out) + except AttributeError: + pass + + return _nanmean(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims) + + +def nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): + """ + Compute the standard deviation along the specified axis, while + ignoring NaNs. + + Returns the standard deviation, a measure of the spread of a distribution, + of the non-NaN array elements. The standard deviation is computed for the + flattened array by default, otherwise over the specified axis. + + Parameters + ---------- + a : array_like + Calculate the standard deviation of the non-NaN values. + axis : int, optional + Axis along which the standard deviation is computed. The default is + to compute the standard deviation of the flattened array. + dtype : dtype, optional + Type to use in computing the standard deviation. For arrays of + integer type the default is float64, for arrays of float types it is + the same as the array type. + out : ndarray, optional + Alternative output array in which to place the result. It must have + the same shape as the expected output but the type (of the calculated + values) will be cast if necessary. + ddof : int, optional + Means Delta Degrees of Freedom. The divisor used in calculations + is ``N - ddof``, where ``N`` represents the number of elements. + By default `ddof` is zero. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `arr`. + + Returns + ------- + standard_deviation : ndarray, see dtype parameter above. + If `out` is None, return a new array containing the standard deviation, + otherwise return a reference to the output array. + + See Also + -------- + var, mean, std + nanvar, nanmean + numpy.doc.ufuncs : Section "Output arguments" + + Notes + ----- + The standard deviation is the square root of the average of the squared + deviations from the mean, i.e., ``std = sqrt(mean(abs(x - x.mean())**2))``. + + The average squared deviation is normally calculated as + ``x.sum() / N``, where ``N = len(x)``. If, however, `ddof` is specified, + the divisor ``N - ddof`` is used instead. In standard statistical + practice, ``ddof=1`` provides an unbiased estimator of the variance + of the infinite population. ``ddof=0`` provides a maximum likelihood + estimate of the variance for normally distributed variables. The + standard deviation computed in this function is the square root of + the estimated variance, so even with ``ddof=1``, it will not be an + unbiased estimate of the standard deviation per se. + + Note that, for complex numbers, `std` takes the absolute + value before squaring, so that the result is always real and nonnegative. + + For floating-point input, the *std* is computed using the same + precision the input has. Depending on the input data, this can cause + the results to be inaccurate, especially for float32 (see example below). + Specifying a higher-accuracy accumulator using the `dtype` keyword can + alleviate this issue. + + Examples + -------- + >>> a = np.array([[1, np.nan], [3, 4]]) + >>> np.nanstd(a) + 1.247219128924647 + >>> np.nanstd(a, axis=0) + array([ 1., 0.]) + >>> np.nanstd(a, axis=1) + array([ 0., 0.5]) + + """ + + if not (type(a) is np.ndarray): + try: + nanstd = a.nanstd + return nanstd(axis=axis, dtype=dtype, out=out, ddof=ddof) + except AttributeError: + pass + + return _nanstd(a, axis=axis, dtype=dtype, out=out, ddof=ddof, + keepdims=keepdims) + + +def nanvar(a, axis=None, dtype=None, out=None, ddof=0, + keepdims=False): + """ + Compute the variance along the specified axis, while ignoring NaNs. + + Returns the variance of the array elements, a measure of the spread of a + distribution. The variance is computed for the flattened array by + default, otherwise over the specified axis. + + Parameters + ---------- + a : array_like + Array containing numbers whose variance is desired. If `a` is not an + array, a conversion is attempted. + axis : int, optional + Axis along which the variance is computed. The default is to compute + the variance of the flattened array. + dtype : data-type, optional + Type to use in computing the variance. For arrays of integer type + the default is `float32`; for arrays of float types it is the same as + the array type. + out : ndarray, optional + Alternate output array in which to place the result. It must have + the same shape as the expected output, but the type is cast if + necessary. + ddof : int, optional + "Delta Degrees of Freedom": the divisor used in the calculation is + ``N - ddof``, where ``N`` represents the number of elements. By + default `ddof` is zero. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `arr`. + + Returns + ------- + variance : ndarray, see dtype parameter above + If ``out=None``, returns a new array containing the variance; + otherwise, a reference to the output array is returned. + + See Also + -------- + std : Standard deviation + mean : Average + var : Variance while not ignoring NaNs + nanstd, nanmean + numpy.doc.ufuncs : Section "Output arguments" + + Notes + ----- + The variance is the average of the squared deviations from the mean, + i.e., ``var = mean(abs(x - x.mean())**2)``. + + The mean is normally calculated as ``x.sum() / N``, where ``N = len(x)``. + If, however, `ddof` is specified, the divisor ``N - ddof`` is used + instead. In standard statistical practice, ``ddof=1`` provides an + unbiased estimator of the variance of a hypothetical infinite population. + ``ddof=0`` provides a maximum likelihood estimate of the variance for + normally distributed variables. + + Note that for complex numbers, the absolute value is taken before + squaring, so that the result is always real and nonnegative. + + For floating-point input, the variance is computed using the same + precision the input has. Depending on the input data, this can cause + the results to be inaccurate, especially for `float32` (see example + below). Specifying a higher-accuracy accumulator using the ``dtype`` + keyword can alleviate this issue. + + Examples + -------- + >>> a = np.array([[1, np.nan], [3, 4]]) + >>> np.var(a) + 1.5555555555555554 + >>> np.nanvar(a, axis=0) + array([ 1., 0.]) + >>> np.nanvar(a, axis=1) + array([ 0., 0.25]) + + """ + if not (type(a) is np.ndarray): + try: + nanvar = a.nanvar + return nanvar(axis=axis, dtype=dtype, out=out, ddof=ddof) + except AttributeError: + pass + + return _nanvar(a, axis=axis, dtype=dtype, out=out, ddof=ddof, + keepdims=keepdims) diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py index 814743442..cf303993b 100644 --- a/numpy/lib/tests/test_function_base.py +++ b/numpy/lib/tests/test_function_base.py @@ -3,10 +3,10 @@ from __future__ import division, absolute_import, print_function import warnings import numpy as np from numpy.testing import ( - run_module_suite, TestCase, assert_, assert_equal, - assert_array_equal, assert_almost_equal, assert_array_almost_equal, - assert_raises, assert_allclose, assert_array_max_ulp, assert_warns - ) + run_module_suite, TestCase, assert_, assert_equal, assert_array_equal, + assert_almost_equal, assert_array_almost_equal, assert_raises, + assert_allclose, assert_array_max_ulp, assert_warns + ) from numpy.random import rand from numpy.lib import * from numpy.compat import long @@ -1111,127 +1111,6 @@ class TestCheckFinite(TestCase): assert_(a.dtype == np.float64) -class TestNaNFuncts(TestCase): - def setUp(self): - self.A = np.array([[[ np.nan, 0.01319214, 0.01620964], - [ 0.11704017, np.nan, 0.75157887], - [ 0.28333658, 0.1630199 , np.nan ]], - [[ 0.59541557, np.nan, 0.37910852], - [ np.nan, 0.87964135, np.nan ], - [ 0.70543747, np.nan, 0.34306596]], - [[ 0.72687499, 0.91084584, np.nan ], - [ 0.84386844, 0.38944762, 0.23913896], - [ np.nan, 0.37068164, 0.33850425]]]) - - def test_nansum(self): - assert_almost_equal(nansum(self.A), 8.0664079100000006) - assert_almost_equal(nansum(self.A, 0), - np.array([[ 1.32229056, 0.92403798, 0.39531816], - [ 0.96090861, 1.26908897, 0.99071783], - [ 0.98877405, 0.53370154, 0.68157021]])) - assert_almost_equal(nansum(self.A, 1), - np.array([[ 0.40037675, 0.17621204, 0.76778851], - [ 1.30085304, 0.87964135, 0.72217448], - [ 1.57074343, 1.6709751 , 0.57764321]])) - assert_almost_equal(nansum(self.A, 2), - np.array([[ 0.02940178, 0.86861904, 0.44635648], - [ 0.97452409, 0.87964135, 1.04850343], - [ 1.63772083, 1.47245502, 0.70918589]])) - - def test_nanmin(self): - assert_almost_equal(nanmin(self.A), 0.01319214) - assert_almost_equal(nanmin(self.A, 0), - np.array([[ 0.59541557, 0.01319214, 0.01620964], - [ 0.11704017, 0.38944762, 0.23913896], - [ 0.28333658, 0.1630199 , 0.33850425]])) - assert_almost_equal(nanmin(self.A, 1), - np.array([[ 0.11704017, 0.01319214, 0.01620964], - [ 0.59541557, 0.87964135, 0.34306596], - [ 0.72687499, 0.37068164, 0.23913896]])) - assert_almost_equal(nanmin(self.A, 2), - np.array([[ 0.01319214, 0.11704017, 0.1630199 ], - [ 0.37910852, 0.87964135, 0.34306596], - [ 0.72687499, 0.23913896, 0.33850425]])) - assert_(np.isnan(nanmin([np.nan, np.nan]))) - - def test_nanargmin(self): - assert_almost_equal(nanargmin(self.A), 1) - assert_almost_equal(nanargmin(self.A, 0), - np.array([[1, 0, 0], - [0, 2, 2], - [0, 0, 2]])) - assert_almost_equal(nanargmin(self.A, 1), - np.array([[1, 0, 0], - [0, 1, 2], - [0, 2, 1]])) - assert_almost_equal(nanargmin(self.A, 2), - np.array([[1, 0, 1], - [2, 1, 2], - [0, 2, 2]])) - - def test_nanmax(self): - assert_almost_equal(nanmax(self.A), 0.91084584000000002) - assert_almost_equal(nanmax(self.A, 0), - np.array([[ 0.72687499, 0.91084584, 0.37910852], - [ 0.84386844, 0.87964135, 0.75157887], - [ 0.70543747, 0.37068164, 0.34306596]])) - assert_almost_equal(nanmax(self.A, 1), - np.array([[ 0.28333658, 0.1630199 , 0.75157887], - [ 0.70543747, 0.87964135, 0.37910852], - [ 0.84386844, 0.91084584, 0.33850425]])) - assert_almost_equal(nanmax(self.A, 2), - np.array([[ 0.01620964, 0.75157887, 0.28333658], - [ 0.59541557, 0.87964135, 0.70543747], - [ 0.91084584, 0.84386844, 0.37068164]])) - assert_(np.isnan(nanmax([np.nan, np.nan]))) - - def test_nanmin_allnan_on_axis(self): - assert_array_equal(np.isnan(nanmin([[np.nan] * 2] * 3, axis=1)), - [True, True, True]) - - def test_nanmin_masked(self): - a = np.ma.fix_invalid([[2, 1, 3, np.nan], [5, 2, 3, np.nan]]) - ctrl_mask = a._mask.copy() - test = np.nanmin(a, axis=1) - assert_equal(test, [1, 2]) - assert_equal(a._mask, ctrl_mask) - assert_equal(np.isinf(a), np.zeros((2, 4), dtype=bool)) - - -class TestNanFunctsIntTypes(TestCase): - - int_types = ( - np.int8, np.int16, np.int32, np.int64, np.uint8, - np.uint16, np.uint32, np.uint64) - - def setUp(self, *args, **kwargs): - self.A = np.array([127, 39, 93, 87, 46]) - - def integer_arrays(self): - for dtype in self.int_types: - yield self.A.astype(dtype) - - def test_nanmin(self): - min_value = min(self.A) - for A in self.integer_arrays(): - assert_equal(nanmin(A), min_value) - - def test_nanmax(self): - max_value = max(self.A) - for A in self.integer_arrays(): - assert_equal(nanmax(A), max_value) - - def test_nanargmin(self): - min_arg = np.argmin(self.A) - for A in self.integer_arrays(): - assert_equal(nanargmin(A), min_arg) - - def test_nanargmax(self): - max_arg = np.argmax(self.A) - for A in self.integer_arrays(): - assert_equal(nanargmax(A), max_arg) - - class TestCorrCoef(TestCase): A = np.array([[ 0.15391142, 0.18045767, 0.14197213], [ 0.70461506, 0.96474128, 0.27906989], @@ -1278,7 +1157,7 @@ class TestCov(TestCase): assert_equal(cov(np.array([]).reshape(0, 2)).shape, (0, 2)) -class Test_i0(TestCase): +class Test_I0(TestCase): def test_simple(self): assert_almost_equal(i0(0.5), np.array(1.0634833707413234)) A = np.array([ 0.49842636, 0.6969809 , 0.22011976, 0.0155549]) @@ -1596,7 +1475,5 @@ class TestAdd_newdoc_ufunc(TestCase): assert_raises(TypeError, add_newdoc_ufunc, np.add, 3) - - if __name__ == "__main__": run_module_suite() diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py new file mode 100644 index 000000000..1d11862e9 --- /dev/null +++ b/numpy/lib/tests/test_nanfunctions.py @@ -0,0 +1,240 @@ +from __future__ import division, absolute_import, print_function + +import warnings + +import numpy as np +from numpy.testing import ( + run_module_suite, TestCase, assert_, assert_equal, assert_almost_equal + ) +from numpy.lib import ( + nansum, nanmax, nanargmax, nanargmin, nanmin, nanmean, nanvar, nanstd + ) + +class TestNaNFuncts(TestCase): + def setUp(self): + self.A = np.array([[[ np.nan, 0.01319214, 0.01620964], + [ 0.11704017, np.nan, 0.75157887], + [ 0.28333658, 0.1630199 , np.nan ]], + [[ 0.59541557, np.nan, 0.37910852], + [ np.nan, 0.87964135, np.nan ], + [ 0.70543747, np.nan, 0.34306596]], + [[ 0.72687499, 0.91084584, np.nan ], + [ 0.84386844, 0.38944762, 0.23913896], + [ np.nan, 0.37068164, 0.33850425]]]) + + def test_nansum(self): + assert_almost_equal(nansum(self.A), 8.0664079100000006) + assert_almost_equal(nansum(self.A, 0), + np.array([[ 1.32229056, 0.92403798, 0.39531816], + [ 0.96090861, 1.26908897, 0.99071783], + [ 0.98877405, 0.53370154, 0.68157021]])) + assert_almost_equal(nansum(self.A, 1), + np.array([[ 0.40037675, 0.17621204, 0.76778851], + [ 1.30085304, 0.87964135, 0.72217448], + [ 1.57074343, 1.6709751 , 0.57764321]])) + assert_almost_equal(nansum(self.A, 2), + np.array([[ 0.02940178, 0.86861904, 0.44635648], + [ 0.97452409, 0.87964135, 1.04850343], + [ 1.63772083, 1.47245502, 0.70918589]])) + + def test_nanmin(self): + assert_almost_equal(nanmin(self.A), 0.01319214) + assert_almost_equal(nanmin(self.A, 0), + np.array([[ 0.59541557, 0.01319214, 0.01620964], + [ 0.11704017, 0.38944762, 0.23913896], + [ 0.28333658, 0.1630199 , 0.33850425]])) + assert_almost_equal(nanmin(self.A, 1), + np.array([[ 0.11704017, 0.01319214, 0.01620964], + [ 0.59541557, 0.87964135, 0.34306596], + [ 0.72687499, 0.37068164, 0.23913896]])) + assert_almost_equal(nanmin(self.A, 2), + np.array([[ 0.01319214, 0.11704017, 0.1630199 ], + [ 0.37910852, 0.87964135, 0.34306596], + [ 0.72687499, 0.23913896, 0.33850425]])) + assert_(np.isnan(nanmin([np.nan, np.nan]))) + + def test_nanargmin(self): + assert_almost_equal(nanargmin(self.A), 1) + assert_almost_equal(nanargmin(self.A, 0), + np.array([[1, 0, 0], + [0, 2, 2], + [0, 0, 2]])) + assert_almost_equal(nanargmin(self.A, 1), + np.array([[1, 0, 0], + [0, 1, 2], + [0, 2, 1]])) + assert_almost_equal(nanargmin(self.A, 2), + np.array([[1, 0, 1], + [2, 1, 2], + [0, 2, 2]])) + + def test_nanmax(self): + assert_almost_equal(nanmax(self.A), 0.91084584000000002) + assert_almost_equal(nanmax(self.A, 0), + np.array([[ 0.72687499, 0.91084584, 0.37910852], + [ 0.84386844, 0.87964135, 0.75157887], + [ 0.70543747, 0.37068164, 0.34306596]])) + assert_almost_equal(nanmax(self.A, 1), + np.array([[ 0.28333658, 0.1630199 , 0.75157887], + [ 0.70543747, 0.87964135, 0.37910852], + [ 0.84386844, 0.91084584, 0.33850425]])) + assert_almost_equal(nanmax(self.A, 2), + np.array([[ 0.01620964, 0.75157887, 0.28333658], + [ 0.59541557, 0.87964135, 0.70543747], + [ 0.91084584, 0.84386844, 0.37068164]])) + assert_(np.isnan(nanmax([np.nan, np.nan]))) + + def test_nanmin_allnan_on_axis(self): + assert_equal(np.isnan(nanmin([[np.nan] * 2] * 3, axis=1)), + [True, True, True]) + + def test_nanmin_masked(self): + a = np.ma.fix_invalid([[2, 1, 3, np.nan], [5, 2, 3, np.nan]]) + ctrl_mask = a._mask.copy() + test = np.nanmin(a, axis=1) + assert_equal(test, [1, 2]) + assert_equal(a._mask, ctrl_mask) + assert_equal(np.isinf(a), np.zeros((2, 4), dtype=bool)) + + def test_nanmean(self): + A = [[1, np.nan, np.nan], [np.nan, 4, 5]] + assert_(nanmean(A) == (10.0 / 3)) + assert_(all(nanmean(A,0) == np.array([1, 4, 5]))) + assert_(all(nanmean(A,1) == np.array([1, 4.5]))) + + def test_nanstd(self): + A = [[1, np.nan, np.nan], [np.nan, 4, 5]] + assert_almost_equal(nanstd(A), 1.699673171197595) + assert_almost_equal(nanstd(A,0), np.array([0.0, 0.0, 0.0])) + assert_almost_equal(nanstd(A,1), np.array([0.0, 0.5])) + + def test_nanvar(self): + A = [[1, np.nan, np.nan], [np.nan, 4, 5]] + assert_almost_equal(nanvar(A), 2.88888888889) + assert_almost_equal(nanvar(A,0), np.array([0.0, 0.0, 0.0])) + assert_almost_equal(nanvar(A,1), np.array([0.0, 0.25])) + + +class TestNaNMean(TestCase): + def setUp(self): + self.A = np.array([1, np.nan, -1, np.nan, np.nan, 1, -1]) + self.B = np.array([np.nan, np.nan, np.nan, np.nan]) + self.real_mean = 0 + + def test_basic(self): + assert_almost_equal(nanmean(self.A),self.real_mean) + + def test_mutation(self): + # Because of the "messing around" we do to replace NaNs with zeros + # this is meant to ensure we don't actually replace the NaNs in the + # actual _array. + a_copy = self.A.copy() + b_copy = self.B.copy() + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + a_ret = nanmean(self.A) + assert_equal(self.A, a_copy) + b_ret = nanmean(self.B) + assert_equal(self.B, b_copy) + + def test_allnans(self): + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_(np.isnan(nanmean(self.B))) + assert_(w[0].category is RuntimeWarning) + + def test_empty(self): + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_(np.isnan(nanmean(np.array([])))) + assert_(w[0].category is RuntimeWarning) + + +class TestNaNStdVar(TestCase): + def setUp(self): + self.A = np.array([np.nan, 1, -1, np.nan, 1, np.nan, -1]) + self.B = np.array([np.nan, np.nan, np.nan, np.nan]) + self.real_var = 1 + + def test_basic(self): + assert_almost_equal(nanvar(self.A),self.real_var) + assert_almost_equal(nanstd(self.A)**2,self.real_var) + + def test_mutation(self): + # Because of the "messing around" we do to replace NaNs with zeros + # this is meant to ensure we don't actually replace the NaNs in the + # actual array. + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + a_copy = self.A.copy() + b_copy = self.B.copy() + a_ret = nanvar(self.A) + assert_equal(self.A, a_copy) + b_ret = nanstd(self.B) + assert_equal(self.B, b_copy) + + def test_ddof1(self): + mask = ~np.isnan(self.A) + assert_almost_equal(nanvar(self.A,ddof=1), + self.real_var*sum(mask)/float(sum(mask) - 1)) + assert_almost_equal(nanstd(self.A,ddof=1)**2, + self.real_var*sum(mask)/float(sum(mask) - 1)) + + def test_ddof2(self): + mask = ~np.isnan(self.A) + assert_almost_equal(nanvar(self.A,ddof=2), + self.real_var*sum(mask)/float(sum(mask) - 2)) + assert_almost_equal(nanstd(self.A,ddof=2)**2, + self.real_var*sum(mask)/float(sum(mask) - 2)) + + def test_allnans(self): + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_(np.isnan(nanvar(self.B))) + assert_(np.isnan(nanstd(self.B))) + assert_(w[0].category is RuntimeWarning) + + def test_empty(self): + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_(np.isnan(nanvar(np.array([])))) + assert_(np.isnan(nanstd(np.array([])))) + assert_(w[0].category is RuntimeWarning) + + +class TestNanFunctsIntTypes(TestCase): + + int_types = ( + np.int8, np.int16, np.int32, np.int64, np.uint8, + np.uint16, np.uint32, np.uint64) + + def setUp(self, *args, **kwargs): + self.A = np.array([127, 39, 93, 87, 46]) + + def integer_arrays(self): + for dtype in self.int_types: + yield self.A.astype(dtype) + + def test_nanmin(self): + min_value = min(self.A) + for A in self.integer_arrays(): + assert_equal(nanmin(A), min_value) + + def test_nanmax(self): + max_value = max(self.A) + for A in self.integer_arrays(): + assert_equal(nanmax(A), max_value) + + def test_nanargmin(self): + min_arg = np.argmin(self.A) + for A in self.integer_arrays(): + assert_equal(nanargmin(A), min_arg) + + def test_nanargmax(self): + max_arg = np.argmax(self.A) + for A in self.integer_arrays(): + assert_equal(nanargmax(A), max_arg) + + +if __name__ == "__main__": + run_module_suite() |