summaryrefslogtreecommitdiff
path: root/numpy/ma/tests/test_extras.py
diff options
context:
space:
mode:
authorStefan van der Walt <stefan@sun.ac.za>2007-12-15 01:15:26 +0000
committerStefan van der Walt <stefan@sun.ac.za>2007-12-15 01:15:26 +0000
commit703e8d6323b19cbfeb96772c1e35f1cd68629336 (patch)
tree34bd23200d97ff43369d7d23d37c9c08c3d3a3b4 /numpy/ma/tests/test_extras.py
parent61f9f6d0fb169cadefe35ea2bdd783848aa771f5 (diff)
downloadnumpy-703e8d6323b19cbfeb96772c1e35f1cd68629336.tar.gz
Move ma to numpy root. Fix unit tests. Remove references to numpy.core.ma.
Diffstat (limited to 'numpy/ma/tests/test_extras.py')
-rw-r--r--numpy/ma/tests/test_extras.py331
1 files changed, 331 insertions, 0 deletions
diff --git a/numpy/ma/tests/test_extras.py b/numpy/ma/tests/test_extras.py
new file mode 100644
index 000000000..5a52aeeee
--- /dev/null
+++ b/numpy/ma/tests/test_extras.py
@@ -0,0 +1,331 @@
+# pylint: disable-msg=W0611, W0612, W0511
+"""Tests suite for MaskedArray.
+Adapted from the original test_ma by Pierre Gerard-Marchant
+
+:author: Pierre Gerard-Marchant
+:contact: pierregm_at_uga_dot_edu
+:version: $Id: test_extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $
+"""
+__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)"
+__version__ = '1.0'
+__revision__ = "$Revision: 3473 $"
+__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
+
+import numpy as N
+from numpy.testing import NumpyTest, NumpyTestCase
+from numpy.testing.utils import build_err_msg
+
+import numpy.ma.testutils
+from numpy.ma.testutils import *
+
+import numpy.ma.core
+from numpy.ma.core import *
+import numpy.ma.extras
+from numpy.ma.extras import *
+
+class TestAverage(NumpyTestCase):
+ "Several tests of average. Why so many ? Good point..."
+ def check_testAverage1(self):
+ "Test of average."
+ ott = array([0.,1.,2.,3.], mask=[1,0,0,0])
+ assert_equal(2.0, average(ott,axis=0))
+ assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.]))
+ result, wts = average(ott, weights=[1.,1.,2.,1.], returned=1)
+ assert_equal(2.0, result)
+ assert(wts == 4.0)
+ ott[:] = masked
+ assert_equal(average(ott,axis=0).mask, [True])
+ ott = array([0.,1.,2.,3.], mask=[1,0,0,0])
+ ott = ott.reshape(2,2)
+ ott[:,1] = masked
+ assert_equal(average(ott,axis=0), [2.0, 0.0])
+ assert_equal(average(ott,axis=1).mask[0], [True])
+ assert_equal([2.,0.], average(ott, axis=0))
+ result, wts = average(ott, axis=0, returned=1)
+ assert_equal(wts, [1., 0.])
+
+ def check_testAverage2(self):
+ "More tests of average."
+ w1 = [0,1,1,1,1,0]
+ w2 = [[0,1,1,1,1,0],[1,0,0,0,0,1]]
+ x = arange(6, dtype=float_)
+ assert_equal(average(x, axis=0), 2.5)
+ assert_equal(average(x, axis=0, weights=w1), 2.5)
+ y = array([arange(6, dtype=float_), 2.0*arange(6)])
+ assert_equal(average(y, None), N.add.reduce(N.arange(6))*3./12.)
+ assert_equal(average(y, axis=0), N.arange(6) * 3./2.)
+ assert_equal(average(y, axis=1), [average(x,axis=0), average(x,axis=0) * 2.0])
+ assert_equal(average(y, None, weights=w2), 20./6.)
+ assert_equal(average(y, axis=0, weights=w2), [0.,1.,2.,3.,4.,10.])
+ assert_equal(average(y, axis=1), [average(x,axis=0), average(x,axis=0) * 2.0])
+ m1 = zeros(6)
+ m2 = [0,0,1,1,0,0]
+ m3 = [[0,0,1,1,0,0],[0,1,1,1,1,0]]
+ m4 = ones(6)
+ m5 = [0, 1, 1, 1, 1, 1]
+ assert_equal(average(masked_array(x, m1),axis=0), 2.5)
+ assert_equal(average(masked_array(x, m2),axis=0), 2.5)
+ assert_equal(average(masked_array(x, m4),axis=0).mask, [True])
+ assert_equal(average(masked_array(x, m5),axis=0), 0.0)
+ assert_equal(count(average(masked_array(x, m4),axis=0)), 0)
+ z = masked_array(y, m3)
+ assert_equal(average(z, None), 20./6.)
+ assert_equal(average(z, axis=0), [0.,1.,99.,99.,4.0, 7.5])
+ assert_equal(average(z, axis=1), [2.5, 5.0])
+ assert_equal(average(z,axis=0, weights=w2), [0.,1., 99., 99., 4.0, 10.0])
+
+ def check_testAverage3(self):
+ "Yet more tests of average!"
+ a = arange(6)
+ b = arange(6) * 3
+ r1, w1 = average([[a,b],[b,a]], axis=1, returned=1)
+ assert_equal(shape(r1) , shape(w1))
+ assert_equal(r1.shape , w1.shape)
+ r2, w2 = average(ones((2,2,3)), axis=0, weights=[3,1], returned=1)
+ assert_equal(shape(w2) , shape(r2))
+ r2, w2 = average(ones((2,2,3)), returned=1)
+ assert_equal(shape(w2) , shape(r2))
+ r2, w2 = average(ones((2,2,3)), weights=ones((2,2,3)), returned=1)
+ assert_equal(shape(w2), shape(r2))
+ a2d = array([[1,2],[0,4]], float)
+ a2dm = masked_array(a2d, [[0,0],[1,0]])
+ a2da = average(a2d, axis=0)
+ assert_equal(a2da, [0.5, 3.0])
+ a2dma = average(a2dm, axis=0)
+ assert_equal(a2dma, [1.0, 3.0])
+ a2dma = average(a2dm, axis=None)
+ assert_equal(a2dma, 7./3.)
+ a2dma = average(a2dm, axis=1)
+ assert_equal(a2dma, [1.5, 4.0])
+
+class TestConcatenator(NumpyTestCase):
+ "Tests for mr_, the equivalent of r_ for masked arrays."
+ def check_1d(self):
+ "Tests mr_ on 1D arrays."
+ assert_array_equal(mr_[1,2,3,4,5,6],array([1,2,3,4,5,6]))
+ b = ones(5)
+ m = [1,0,0,0,0]
+ d = masked_array(b,mask=m)
+ c = mr_[d,0,0,d]
+ assert(isinstance(c,MaskedArray) or isinstance(c,core.MaskedArray))
+ assert_array_equal(c,[1,1,1,1,1,0,0,1,1,1,1,1])
+ assert_array_equal(c.mask, mr_[m,0,0,m])
+
+ def check_2d(self):
+ "Tests mr_ on 2D arrays."
+ a_1 = rand(5,5)
+ a_2 = rand(5,5)
+ m_1 = N.round_(rand(5,5),0)
+ m_2 = N.round_(rand(5,5),0)
+ b_1 = masked_array(a_1,mask=m_1)
+ b_2 = masked_array(a_2,mask=m_2)
+ d = mr_['1',b_1,b_2] # append columns
+ assert(d.shape == (5,10))
+ assert_array_equal(d[:,:5],b_1)
+ assert_array_equal(d[:,5:],b_2)
+ assert_array_equal(d.mask, N.r_['1',m_1,m_2])
+ d = mr_[b_1,b_2]
+ assert(d.shape == (10,5))
+ assert_array_equal(d[:5,:],b_1)
+ assert_array_equal(d[5:,:],b_2)
+ assert_array_equal(d.mask, N.r_[m_1,m_2])
+
+class TestNotMasked(NumpyTestCase):
+ "Tests notmasked_edges and notmasked_contiguous."
+ def check_edges(self):
+ "Tests unmasked_edges"
+ a = masked_array(N.arange(24).reshape(3,8),
+ mask=[[0,0,0,0,1,1,1,0],
+ [1,1,1,1,1,1,1,1],
+ [0,0,0,0,0,0,1,0],])
+ #
+ assert_equal(notmasked_edges(a, None), [0,23])
+ #
+ tmp = notmasked_edges(a, 0)
+ assert_equal(tmp[0], (array([0,0,0,0,2,2,0]), array([0,1,2,3,4,5,7])))
+ assert_equal(tmp[1], (array([2,2,2,2,2,2,2]), array([0,1,2,3,4,5,7])))
+ #
+ tmp = notmasked_edges(a, 1)
+ assert_equal(tmp[0], (array([0,2,]), array([0,0])))
+ assert_equal(tmp[1], (array([0,2,]), array([7,7])))
+
+ def check_contiguous(self):
+ "Tests notmasked_contiguous"
+ a = masked_array(N.arange(24).reshape(3,8),
+ mask=[[0,0,0,0,1,1,1,1],
+ [1,1,1,1,1,1,1,1],
+ [0,0,0,0,0,0,1,0],])
+ tmp = notmasked_contiguous(a, None)
+ assert_equal(tmp[-1], slice(23,23,None))
+ assert_equal(tmp[-2], slice(16,21,None))
+ assert_equal(tmp[-3], slice(0,3,None))
+ #
+ tmp = notmasked_contiguous(a, 0)
+ assert(len(tmp[-1]) == 1)
+ assert(tmp[-2] is None)
+ assert_equal(tmp[-3],tmp[-1])
+ assert(len(tmp[0]) == 2)
+ #
+ tmp = notmasked_contiguous(a, 1)
+ assert_equal(tmp[0][-1], slice(0,3,None))
+ assert(tmp[1] is None)
+ assert_equal(tmp[2][-1], slice(7,7,None))
+ assert_equal(tmp[2][-2], slice(0,5,None))
+
+class Test2DFunctions(NumpyTestCase):
+ "Tests 2D functions"
+ def check_compress2d(self):
+ "Tests compress2d"
+ x = array(N.arange(9).reshape(3,3), mask=[[1,0,0],[0,0,0],[0,0,0]])
+ assert_equal(compress_rowcols(x), [[4,5],[7,8]] )
+ assert_equal(compress_rowcols(x,0), [[3,4,5],[6,7,8]] )
+ assert_equal(compress_rowcols(x,1), [[1,2],[4,5],[7,8]] )
+ x = array(x._data, mask=[[0,0,0],[0,1,0],[0,0,0]])
+ assert_equal(compress_rowcols(x), [[0,2],[6,8]] )
+ assert_equal(compress_rowcols(x,0), [[0,1,2],[6,7,8]] )
+ assert_equal(compress_rowcols(x,1), [[0,2],[3,5],[6,8]] )
+ x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,0]])
+ assert_equal(compress_rowcols(x), [[8]] )
+ assert_equal(compress_rowcols(x,0), [[6,7,8]] )
+ assert_equal(compress_rowcols(x,1,), [[2],[5],[8]] )
+ x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,1]])
+ assert_equal(compress_rowcols(x).size, 0 )
+ assert_equal(compress_rowcols(x,0).size, 0 )
+ assert_equal(compress_rowcols(x,1).size, 0 )
+ #
+ def check_mask_rowcols(self):
+ "Tests mask_rowcols."
+ x = array(N.arange(9).reshape(3,3), mask=[[1,0,0],[0,0,0],[0,0,0]])
+ assert_equal(mask_rowcols(x).mask, [[1,1,1],[1,0,0],[1,0,0]] )
+ assert_equal(mask_rowcols(x,0).mask, [[1,1,1],[0,0,0],[0,0,0]] )
+ assert_equal(mask_rowcols(x,1).mask, [[1,0,0],[1,0,0],[1,0,0]] )
+ x = array(x._data, mask=[[0,0,0],[0,1,0],[0,0,0]])
+ assert_equal(mask_rowcols(x).mask, [[0,1,0],[1,1,1],[0,1,0]] )
+ assert_equal(mask_rowcols(x,0).mask, [[0,0,0],[1,1,1],[0,0,0]] )
+ assert_equal(mask_rowcols(x,1).mask, [[0,1,0],[0,1,0],[0,1,0]] )
+ x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,0]])
+ assert_equal(mask_rowcols(x).mask, [[1,1,1],[1,1,1],[1,1,0]] )
+ assert_equal(mask_rowcols(x,0).mask, [[1,1,1],[1,1,1],[0,0,0]] )
+ assert_equal(mask_rowcols(x,1,).mask, [[1,1,0],[1,1,0],[1,1,0]] )
+ x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,1]])
+ assert(mask_rowcols(x).all())
+ assert(mask_rowcols(x,0).all())
+ assert(mask_rowcols(x,1).all())
+ #
+ def test_dot(self):
+ "Tests dot product"
+ n = N.arange(1,7)
+ #
+ m = [1,0,0,0,0,0]
+ a = masked_array(n, mask=m).reshape(2,3)
+ b = masked_array(n, mask=m).reshape(3,2)
+ c = dot(a,b,True)
+ assert_equal(c.mask, [[1,1],[1,0]])
+ c = dot(b,a,True)
+ assert_equal(c.mask, [[1,1,1],[1,0,0],[1,0,0]])
+ c = dot(a,b,False)
+ assert_equal(c, N.dot(a.filled(0), b.filled(0)))
+ c = dot(b,a,False)
+ assert_equal(c, N.dot(b.filled(0), a.filled(0)))
+ #
+ m = [0,0,0,0,0,1]
+ a = masked_array(n, mask=m).reshape(2,3)
+ b = masked_array(n, mask=m).reshape(3,2)
+ c = dot(a,b,True)
+ assert_equal(c.mask,[[0,1],[1,1]])
+ c = dot(b,a,True)
+ assert_equal(c.mask, [[0,0,1],[0,0,1],[1,1,1]])
+ c = dot(a,b,False)
+ assert_equal(c, N.dot(a.filled(0), b.filled(0)))
+ assert_equal(c, dot(a,b))
+ c = dot(b,a,False)
+ assert_equal(c, N.dot(b.filled(0), a.filled(0)))
+ #
+ m = [0,0,0,0,0,0]
+ a = masked_array(n, mask=m).reshape(2,3)
+ b = masked_array(n, mask=m).reshape(3,2)
+ c = dot(a,b)
+ assert_equal(c.mask,nomask)
+ c = dot(b,a)
+ assert_equal(c.mask,nomask)
+ #
+ a = masked_array(n, mask=[1,0,0,0,0,0]).reshape(2,3)
+ b = masked_array(n, mask=[0,0,0,0,0,0]).reshape(3,2)
+ c = dot(a,b,True)
+ assert_equal(c.mask,[[1,1],[0,0]])
+ c = dot(a,b,False)
+ assert_equal(c, N.dot(a.filled(0),b.filled(0)))
+ c = dot(b,a,True)
+ assert_equal(c.mask,[[1,0,0],[1,0,0],[1,0,0]])
+ c = dot(b,a,False)
+ assert_equal(c, N.dot(b.filled(0),a.filled(0)))
+ #
+ a = masked_array(n, mask=[0,0,0,0,0,1]).reshape(2,3)
+ b = masked_array(n, mask=[0,0,0,0,0,0]).reshape(3,2)
+ c = dot(a,b,True)
+ assert_equal(c.mask,[[0,0],[1,1]])
+ c = dot(a,b)
+ assert_equal(c, N.dot(a.filled(0),b.filled(0)))
+ c = dot(b,a,True)
+ assert_equal(c.mask,[[0,0,1],[0,0,1],[0,0,1]])
+ c = dot(b,a,False)
+ assert_equal(c, N.dot(b.filled(0), a.filled(0)))
+ #
+ a = masked_array(n, mask=[0,0,0,0,0,1]).reshape(2,3)
+ b = masked_array(n, mask=[0,0,1,0,0,0]).reshape(3,2)
+ c = dot(a,b,True)
+ assert_equal(c.mask,[[1,0],[1,1]])
+ c = dot(a,b,False)
+ assert_equal(c, N.dot(a.filled(0),b.filled(0)))
+ c = dot(b,a,True)
+ assert_equal(c.mask,[[0,0,1],[1,1,1],[0,0,1]])
+ c = dot(b,a,False)
+ assert_equal(c, N.dot(b.filled(0),a.filled(0)))
+
+ def test_mediff1d(self):
+ "Tests mediff1d"
+ x = masked_array(N.arange(5), mask=[1,0,0,0,1])
+ difx_d = (x._data[1:]-x._data[:-1])
+ difx_m = (x._mask[1:]-x._mask[:-1])
+ dx = mediff1d(x)
+ assert_equal(dx._data, difx_d)
+ assert_equal(dx._mask, difx_m)
+ #
+ dx = mediff1d(x, to_begin=masked)
+ assert_equal(dx._data, N.r_[0,difx_d])
+ assert_equal(dx._mask, N.r_[1,difx_m])
+ dx = mediff1d(x, to_begin=[1,2,3])
+ assert_equal(dx._data, N.r_[[1,2,3],difx_d])
+ assert_equal(dx._mask, N.r_[[0,0,0],difx_m])
+ #
+ dx = mediff1d(x, to_end=masked)
+ assert_equal(dx._data, N.r_[difx_d,0])
+ assert_equal(dx._mask, N.r_[difx_m,1])
+ dx = mediff1d(x, to_end=[1,2,3])
+ assert_equal(dx._data, N.r_[difx_d,[1,2,3]])
+ assert_equal(dx._mask, N.r_[difx_m,[0,0,0]])
+ #
+ dx = mediff1d(x, to_end=masked, to_begin=masked)
+ assert_equal(dx._data, N.r_[0,difx_d,0])
+ assert_equal(dx._mask, N.r_[1,difx_m,1])
+ dx = mediff1d(x, to_end=[1,2,3], to_begin=masked)
+ assert_equal(dx._data, N.r_[0,difx_d,[1,2,3]])
+ assert_equal(dx._mask, N.r_[1,difx_m,[0,0,0]])
+ #
+ dx = mediff1d(x._data, to_end=masked, to_begin=masked)
+ assert_equal(dx._data, N.r_[0,difx_d,0])
+ assert_equal(dx._mask, N.r_[1,0,0,0,0,1])
+
+class TestApplyAlongAxis(NumpyTestCase):
+ "Tests 2D functions"
+ def check_3d(self):
+ a = arange(12.).reshape(2,2,3)
+ def myfunc(b):
+ return b[1]
+ xa = apply_along_axis(myfunc,2,a)
+ assert_equal(xa,[[1,4],[7,10]])
+
+###############################################################################
+#------------------------------------------------------------------------------
+if __name__ == "__main__":
+ NumpyTest().run()