summaryrefslogtreecommitdiff
path: root/numpy/_array_api/_statistical_functions.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/_array_api/_statistical_functions.py')
-rw-r--r--numpy/_array_api/_statistical_functions.py18
1 files changed, 9 insertions, 9 deletions
diff --git a/numpy/_array_api/_statistical_functions.py b/numpy/_array_api/_statistical_functions.py
index e6a791fe6..4f6b1c034 100644
--- a/numpy/_array_api/_statistical_functions.py
+++ b/numpy/_array_api/_statistical_functions.py
@@ -1,32 +1,32 @@
from __future__ import annotations
-from ._array_object import ndarray
+from ._array_object import Array
from typing import TYPE_CHECKING
if TYPE_CHECKING:
- from ._types import Optional, Tuple, Union, Array
+ from ._types import Optional, Tuple, Union
import numpy as np
def max(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
- return ndarray._new(np.max(x._array, axis=axis, keepdims=keepdims))
+ return Array._new(np.max(x._array, axis=axis, keepdims=keepdims))
def mean(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
- return ndarray._new(np.asarray(np.mean(x._array, axis=axis, keepdims=keepdims)))
+ return Array._new(np.asarray(np.mean(x._array, axis=axis, keepdims=keepdims)))
def min(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
- return ndarray._new(np.min(x._array, axis=axis, keepdims=keepdims))
+ return Array._new(np.min(x._array, axis=axis, keepdims=keepdims))
def prod(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
- return ndarray._new(np.asarray(np.prod(x._array, axis=axis, keepdims=keepdims)))
+ return Array._new(np.asarray(np.prod(x._array, axis=axis, keepdims=keepdims)))
def std(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> Array:
# Note: the keyword argument correction is different here
- return ndarray._new(np.asarray(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims)))
+ return Array._new(np.asarray(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims)))
def sum(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
- return ndarray._new(np.asarray(np.sum(x._array, axis=axis, keepdims=keepdims)))
+ return Array._new(np.asarray(np.sum(x._array, axis=axis, keepdims=keepdims)))
def var(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> Array:
# Note: the keyword argument correction is different here
- return ndarray._new(np.asarray(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims)))
+ return Array._new(np.asarray(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims)))