diff options
Diffstat (limited to 'numpy/_array_api/_statistical_functions.py')
-rw-r--r-- | numpy/_array_api/_statistical_functions.py | 18 |
1 files changed, 9 insertions, 9 deletions
diff --git a/numpy/_array_api/_statistical_functions.py b/numpy/_array_api/_statistical_functions.py index e6a791fe6..4f6b1c034 100644 --- a/numpy/_array_api/_statistical_functions.py +++ b/numpy/_array_api/_statistical_functions.py @@ -1,32 +1,32 @@ from __future__ import annotations -from ._array_object import ndarray +from ._array_object import Array from typing import TYPE_CHECKING if TYPE_CHECKING: - from ._types import Optional, Tuple, Union, Array + from ._types import Optional, Tuple, Union import numpy as np def max(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: - return ndarray._new(np.max(x._array, axis=axis, keepdims=keepdims)) + return Array._new(np.max(x._array, axis=axis, keepdims=keepdims)) def mean(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: - return ndarray._new(np.asarray(np.mean(x._array, axis=axis, keepdims=keepdims))) + return Array._new(np.asarray(np.mean(x._array, axis=axis, keepdims=keepdims))) def min(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: - return ndarray._new(np.min(x._array, axis=axis, keepdims=keepdims)) + return Array._new(np.min(x._array, axis=axis, keepdims=keepdims)) def prod(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: - return ndarray._new(np.asarray(np.prod(x._array, axis=axis, keepdims=keepdims))) + return Array._new(np.asarray(np.prod(x._array, axis=axis, keepdims=keepdims))) def std(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> Array: # Note: the keyword argument correction is different here - return ndarray._new(np.asarray(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims))) + return Array._new(np.asarray(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims))) def sum(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: - return ndarray._new(np.asarray(np.sum(x._array, axis=axis, keepdims=keepdims))) + return Array._new(np.asarray(np.sum(x._array, axis=axis, keepdims=keepdims))) def var(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> Array: # Note: the keyword argument correction is different here - return ndarray._new(np.asarray(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))) + return Array._new(np.asarray(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))) |