summaryrefslogtreecommitdiff
path: root/numpy/_array_api/_statistical_functions.py
diff options
context:
space:
mode:
authorAaron Meurer <asmeurer@gmail.com>2021-07-08 17:22:47 -0600
committerAaron Meurer <asmeurer@gmail.com>2021-07-08 17:22:47 -0600
commitaee3a56d4e150a55c590966c9cc2ae0e201fa936 (patch)
treecb2519e418f8e7b0ad850c5e8c094a801472d9ef /numpy/_array_api/_statistical_functions.py
parentfc1ff6fc3045482a72c359689ee7bfa7e3299985 (diff)
downloadnumpy-aee3a56d4e150a55c590966c9cc2ae0e201fa936.tar.gz
Rename the array class in the array API namespace from ndarray to Array
The actual class name doesn't matter because it isn't part of the namespace API (arrays should be constructed with the array creation functions like asarray()). However, it is better to use a name that is different from the existing NumPy array object to avoid ambiguity.
Diffstat (limited to 'numpy/_array_api/_statistical_functions.py')
-rw-r--r--numpy/_array_api/_statistical_functions.py18
1 files changed, 9 insertions, 9 deletions
diff --git a/numpy/_array_api/_statistical_functions.py b/numpy/_array_api/_statistical_functions.py
index e6a791fe6..4f6b1c034 100644
--- a/numpy/_array_api/_statistical_functions.py
+++ b/numpy/_array_api/_statistical_functions.py
@@ -1,32 +1,32 @@
from __future__ import annotations
-from ._array_object import ndarray
+from ._array_object import Array
from typing import TYPE_CHECKING
if TYPE_CHECKING:
- from ._types import Optional, Tuple, Union, Array
+ from ._types import Optional, Tuple, Union
import numpy as np
def max(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
- return ndarray._new(np.max(x._array, axis=axis, keepdims=keepdims))
+ return Array._new(np.max(x._array, axis=axis, keepdims=keepdims))
def mean(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
- return ndarray._new(np.asarray(np.mean(x._array, axis=axis, keepdims=keepdims)))
+ return Array._new(np.asarray(np.mean(x._array, axis=axis, keepdims=keepdims)))
def min(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
- return ndarray._new(np.min(x._array, axis=axis, keepdims=keepdims))
+ return Array._new(np.min(x._array, axis=axis, keepdims=keepdims))
def prod(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
- return ndarray._new(np.asarray(np.prod(x._array, axis=axis, keepdims=keepdims)))
+ return Array._new(np.asarray(np.prod(x._array, axis=axis, keepdims=keepdims)))
def std(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> Array:
# Note: the keyword argument correction is different here
- return ndarray._new(np.asarray(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims)))
+ return Array._new(np.asarray(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims)))
def sum(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
- return ndarray._new(np.asarray(np.sum(x._array, axis=axis, keepdims=keepdims)))
+ return Array._new(np.asarray(np.sum(x._array, axis=axis, keepdims=keepdims)))
def var(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> Array:
# Note: the keyword argument correction is different here
- return ndarray._new(np.asarray(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims)))
+ return Array._new(np.asarray(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims)))