summaryrefslogtreecommitdiff
path: root/pct-speedtest.py
blob: c7b893a853cff5651403974f3f2e29c8e9175003 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
#  pct-speedtest.py: Speed test for the Python Cryptography Toolkit
#
# Written in 2009 by Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# ===================================================================
# The contents of this file are dedicated to the public domain.  To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================

import time
import os
import sys

from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP, PKCS1_v1_5 as RSAES_PKCS1_v1_5
from Crypto.Signature import PKCS1_PSS, PKCS1_v1_5 as RSASSA_PKCS1_v1_5
from Crypto.Cipher import AES, ARC2, ARC4, Blowfish, CAST, DES3, DES, XOR
from Crypto.Hash import HMAC, MD2, MD4, MD5, SHA224, SHA256, SHA384, SHA512, CMAC
from Crypto.Random import get_random_bytes
import Crypto.Util.Counter
from Crypto.Util.number import bytes_to_long
try:
    from Crypto.Hash import SHA1
except ImportError:
    # Maybe it's called SHA
    from Crypto.Hash import SHA as SHA1
try:
    from Crypto.Hash import RIPEMD160
except ImportError:
    # Maybe it's called RIPEMD
    try:
        from Crypto.Hash import RIPEMD as RIPEMD160
    except ImportError:
        # Some builds of PyCrypto don't have the RIPEMD module
        RIPEMD160 = None

try:
    import hashlib
    import hmac
except ImportError: # Some builds/versions of Python don't have a hashlib module
    hashlib = hmac = None

# os.urandom() is less noisy when profiling, but it doesn't exist in Python < 2.4
try:
    urandom = os.urandom
except AttributeError:
    urandom = get_random_bytes

from Crypto.Random import random as pycrypto_random
import random as stdlib_random

class Benchmark:

    def __init__(self):
        self.__random_data = None

    def random_keys(self, bytes, n=10**5):
        """Return random keys of the specified number of bytes.

        If this function has been called before with the same number of bytes,
        cached keys are used instead of randomly generating new ones.
        """
        return self.random_blocks(bytes, n)

    def random_blocks(self, bytes_per_block, blocks):
        bytes = bytes_per_block * blocks
        data = self.random_data(bytes)
        retval = []
        for i in range(blocks):
            p = i * bytes_per_block
            retval.append(data[p:p+bytes_per_block])
        return retval

    def random_data(self, bytes):
        if self.__random_data is None:
            self.__random_data = self._random_bytes(bytes)
            return self.__random_data
        elif bytes == len(self.__random_data):
            return self.__random_data
        elif bytes < len(self.__random_data):
            return self.__random_data[:bytes]
        else:
            self.__random_data += self._random_bytes(bytes - len(self.__random_data))
            return self.__random_data

    def _random_bytes(self, b):
        return urandom(b)

    def announce_start(self, test_name):
        sys.stdout.write("%s: " % (test_name,))
        sys.stdout.flush()

    def announce_result(self, value, units):
        sys.stdout.write("%.2f %s\n" % (value, units))
        sys.stdout.flush()

    def test_random_module(self, module_name, module):
        self.announce_start("%s.choice" % (module_name,))
        alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
        t0 = time.time()
        for i in range(5000):
            module.choice(alphabet)
        t = time.time()
        invocations_per_second = 5000 / (t - t0)
        self.announce_result(invocations_per_second, "invocations/sec")

    def test_pubkey_setup(self, pubkey_name, module, key_bytes):
        self.announce_start("%s pubkey setup" % (pubkey_name,))
        keys = self.random_keys(key_bytes)[:5]

        t0 = time.time()
        for k in keys:
            module.generate(key_bytes*8)
        t = time.time()
        pubkey_setups_per_second = len(keys) / (t - t0)
        self.announce_result(pubkey_setups_per_second, "Keys/sec")

    def test_key_setup(self, cipher_name, module, key_bytes, mode):
        self.announce_start("%s key setup" % (cipher_name,))

        # Generate random keys for use with the tests
        keys = self.random_keys(key_bytes, n=5000)

        if hasattr(module, "MODE_CCM") and mode==module.MODE_CCM:
            iv = b"\xAA"*8
        else:
            iv = b"\xAA"*module.block_size

        # Perform key setups
        if mode is None:
            t0 = time.time()
            for k in keys:
                module.new(k)
            t = time.time()
        else:
            t0 = time.time()

            if mode==module.MODE_CTR:
                for k in keys:
                    ctr = Crypto.Util.Counter.new(module.block_size*8,
                        initial_value=bytes_to_long(iv))
                    module.new(k, module.MODE_CTR, counter=ctr)
            else:
                for k in keys:
                    module.new(k, mode, iv)
            t = time.time()

        key_setups_per_second = len(keys) / (t - t0)
        self.announce_result(key_setups_per_second/1000, "kKeys/sec")

    def test_encryption(self, cipher_name, module, key_bytes, mode):
        self.announce_start("%s encryption" % (cipher_name,))

        # Generate random keys for use with the tests
        rand = self.random_data(key_bytes + module.block_size)
        key, iv = rand[:key_bytes], rand[key_bytes:]
        blocks = self.random_blocks(16384, 1000)
        if mode is None:
            cipher = module.new(key)
        elif mode == "CTR-BE":
            from Crypto.Util import Counter
            cipher = module.new(key, module.MODE_CTR, counter=Counter.new(module.block_size*8, little_endian=False))
        elif mode == "CTR-LE":
            from Crypto.Util import Counter
            cipher = module.new(key, module.MODE_CTR, counter=Counter.new(module.block_size*8, little_endian=True))
        elif hasattr(module, 'MODE_CCM') and mode==module.MODE_CCM:
            cipher = module.new(key, mode, iv[:8], msg_len=len(rand)*len(blocks))
        elif mode==module.MODE_CTR:
            ctr = Crypto.Util.Counter.new(module.block_size*8,
                    initial_value=bytes_to_long(iv),
                    allow_wraparound=True)
            cipher = module.new(key, module.MODE_CTR, counter=ctr)
        elif mode==module.MODE_ECB:
            cipher = module.new(key, module.MODE_ECB)
        else:
            cipher = module.new(key, mode, iv)

        # Perform encryption
        t0 = time.time()
        for b in blocks:
            cipher.encrypt(b)
        t = time.time()

        encryption_speed = (len(blocks) * len(blocks[0])) / (t - t0)
        self.announce_result(encryption_speed / 10**6, "MBps")

    def test_hash_small(self, hash_name, hash_constructor, digest_size):
        self.announce_start("%s (%d-byte inputs)" % (hash_name, digest_size))

        blocks = self.random_blocks(digest_size, 10000)

        # Initialize hashes
        t0 = time.time()
        for b in blocks:
            hash_constructor(b).digest()
        t = time.time()

        hashes_per_second = len(blocks) / (t - t0)
        self.announce_result(hashes_per_second / 1000, "kHashes/sec")

    def test_hash_large(self, hash_name, hash_constructor, digest_size):
        self.announce_start("%s (single large input)" % (hash_name,))

        blocks = self.random_blocks(16384, 10000)

        # Perform hashing
        t0 = time.time()
        h = hash_constructor()
        for b in blocks:
            h.update(b)
        h.digest()
        t = time.time()

        hash_speed = len(blocks) * len(blocks[0]) / (t - t0)
        self.announce_result(hash_speed / 10**6, "MBps")

    def test_hmac_small(self, mac_name, hmac_constructor, digestmod, digest_size):
        keys = iter(self.random_keys(digest_size))
        if sys.version_info[0] == 2:
            mac_constructor = lambda data=None: hmac_constructor(keys.next(), data, digestmod)
        else:
            mac_constructor = lambda data=None: hmac_constructor(keys.__next__(), data, digestmod)
        self.test_hash_small(mac_name, mac_constructor, digest_size)

    def test_hmac_large(self, mac_name, hmac_constructor, digestmod, digest_size):
        key = self.random_keys(digest_size)[0]
        mac_constructor = lambda data=None: hmac_constructor(key, data, digestmod)
        self.test_hash_large(mac_name, mac_constructor, digest_size)

    def test_cmac_small(self, mac_name, cmac_constructor, ciphermod, key_size):
        keys = iter(self.random_keys(key_size))
        if sys.version_info[0] == 2:
            mac_constructor = lambda data=None: cmac_constructor(keys.next(), data, ciphermod)
        else:
            mac_constructor = lambda data=None: cmac_constructor(keys.__next__(), data, ciphermod)
        self.test_hash_small(mac_name, mac_constructor, ciphermod.block_size)

    def test_cmac_large(self, mac_name, cmac_constructor, ciphermod, key_size):
        key = self.random_keys(key_size)[0]
        mac_constructor = lambda data=None: cmac_constructor(key, data, ciphermod)
        self.test_hash_large(mac_name, mac_constructor, ciphermod.block_size)

    def test_pkcs1_sign(self, scheme_name, scheme_constructor, hash_name, hash_constructor, digest_size):
        self.announce_start("%s signing %s (%d-byte inputs)" % (scheme_name, hash_name, digest_size))

        # Make a key
        k = RSA.generate(2048)
        sigscheme = scheme_constructor(k)

        # Make some hashes
        blocks = self.random_blocks(digest_size, 50)
        hashes = []
        for b in blocks:
            hashes.append(hash_constructor(b))

        # Perform signing
        t0 = time.time()
        for h in hashes:
            sigscheme.sign(h)
        t = time.time()

        speed = len(hashes) / (t - t0)
        self.announce_result(speed, "sigs/sec")

    def test_pkcs1_verify(self, scheme_name, scheme_constructor, hash_name, hash_constructor, digest_size):
        self.announce_start("%s verification %s (%d-byte inputs)" % (scheme_name, hash_name, digest_size))

        # Make a key
        k = RSA.generate(2048)
        sigscheme = scheme_constructor(k)

        # Make some hashes
        blocks = self.random_blocks(digest_size, 50)
        hashes = []
        for b in blocks:
            hashes.append(hash_constructor(b))

        # Make some signatures
        signatures = []
        for h in hashes:
            signatures.append(sigscheme.sign(h))

        # Double the list, to make timing better
        hashes = hashes + hashes
        signatures = signatures + signatures

        # Perform verification
        t0 = time.time()
        for h, s in zip(hashes, signatures):
            sigscheme.verify(h, s)
        t = time.time()

        speed = len(hashes) / (t - t0)
        self.announce_result(speed, "sigs/sec")

    def run(self):
        pubkey_specs = [
            ("RSA(1024)", RSA, int(1024/8)),
            ("RSA(2048)", RSA, int(2048/8)),
            ("RSA(4096)", RSA, int(4096/8)),
            ]
        block_specs = [
            ("DES", DES, 8),
            ("DES3", DES3, 24),
            ("AES128", AES, 16),
            ("AES192", AES, 24),
            ("AES256", AES, 32),
            ("Blowfish(256)", Blowfish, 32),
            ("CAST(40)", CAST, 5),
            ("CAST(80)", CAST, 10),
            ("CAST(128)", CAST, 16),
        ]
        stream_specs = [
            ("ARC2(128)", ARC2, 16),
            ("ARC4(128)", ARC4, 16),
            ("XOR(24)", XOR, 3),
            ("XOR(256)", XOR, 32),
        ]
        hash_specs = [
            ("MD2", MD2),
            ("MD4", MD4),
            ("MD5", MD5),
            ("SHA1", SHA1),
            ("SHA224", SHA224),
            ("SHA256", SHA256),
            ("SHA384", SHA384),
            ("SHA512", SHA512),
        ]
        if RIPEMD160 is not None:
            hash_specs += [("RIPEMD160", RIPEMD160)]

        hashlib_specs = []
        if hashlib is not None:
            if hasattr(hashlib, 'md5'):    hashlib_specs.append(("hashlib.md5",    hashlib.md5))
            if hasattr(hashlib, 'sha1'):   hashlib_specs.append(("hashlib.sha1",   hashlib.sha1))
            if hasattr(hashlib, 'sha224'): hashlib_specs.append(("hashlib.sha224", hashlib.sha224))
            if hasattr(hashlib, 'sha256'): hashlib_specs.append(("hashlib.sha256", hashlib.sha256))
            if hasattr(hashlib, 'sha384'): hashlib_specs.append(("hashlib.sha384", hashlib.sha384))
            if hasattr(hashlib, 'sha512'): hashlib_specs.append(("hashlib.sha512", hashlib.sha512))

        # stdlib random
        self.test_random_module("stdlib random", stdlib_random)

        # Crypto.Random.random
        self.test_random_module("Crypto.Random.random", pycrypto_random)

        # Crypto.PublicKey
        for pubkey_name, module, key_bytes in pubkey_specs:
            self.test_pubkey_setup(pubkey_name, module, key_bytes)

        # Crypto.Cipher (block ciphers)
        for cipher_name, module, key_bytes in block_specs:
            self.test_key_setup("%s-CBC" % (cipher_name,), module, key_bytes, module.MODE_CBC)
            self.test_encryption("%s-CBC" % (cipher_name,), module, key_bytes, module.MODE_CBC)
            self.test_encryption("%s-CFB-8" % (cipher_name,), module, key_bytes, module.MODE_CFB)
            self.test_encryption("%s-OFB" % (cipher_name,), module, key_bytes, module.MODE_OFB)
            self.test_encryption("%s-ECB" % (cipher_name,), module, key_bytes, module.MODE_ECB)

            self.test_key_setup("%s-CTR" % (cipher_name,), module, key_bytes, module.MODE_CTR)
            self.test_encryption("%s-CTR" % (cipher_name,), module, key_bytes, module.MODE_CTR)

            self.test_encryption("%s-OPENPGP" % (cipher_name,), module, key_bytes, module.MODE_OPENPGP)
            self.test_encryption("%s-CTR-BE" % (cipher_name,), module, key_bytes, "CTR-BE")
            self.test_encryption("%s-CTR-LE" % (cipher_name,), module, key_bytes, "CTR-LE")

            if hasattr(module, "MODE_CCM"):
                self.test_key_setup("%s-CCM" % (cipher_name,), module, key_bytes, module.MODE_CCM)
                self.test_encryption("%s-CCM" % (cipher_name,), module, key_bytes, module.MODE_CCM)

            if hasattr(module, "MODE_EAX"):
                self.test_key_setup("%s-EAX" % (cipher_name,), module, key_bytes, module.MODE_EAX)
                self.test_encryption("%s-EAX" % (cipher_name,), module, key_bytes, module.MODE_EAX)

            if hasattr(module, "MODE_GCM"):
                self.test_key_setup("%s-GCM" % (cipher_name,), module, key_bytes, module.MODE_GCM)
                self.test_encryption("%s-GCM" % (cipher_name,), module, key_bytes, module.MODE_GCM)

        # Crypto.Cipher (stream ciphers)
        for cipher_name, module, key_bytes in stream_specs:
            self.test_key_setup(cipher_name, module, key_bytes, None)
            self.test_encryption(cipher_name, module, key_bytes, None)

        # Crypto.Hash
        for hash_name, module in hash_specs:
            self.test_hash_small(hash_name, module.new, module.digest_size)
            self.test_hash_large(hash_name, module.new, module.digest_size)

        # standard hashlib
        for hash_name, func in hashlib_specs:
            self.test_hash_small(hash_name, func, func().digest_size)
            self.test_hash_large(hash_name, func, func().digest_size)

        # PyCrypto HMAC
        for hash_name, module in hash_specs:
            self.test_hmac_small("HMAC-"+hash_name, HMAC.new, module, module.digest_size)
            self.test_hmac_large("HMAC-"+hash_name, HMAC.new, module, module.digest_size)

        # standard hmac + hashlib
        for hash_name, func in hashlib_specs:
            self.test_hmac_small("hmac+"+hash_name, hmac.HMAC, func, func().digest_size)
            self.test_hmac_large("hmac+"+hash_name, hmac.HMAC, func, func().digest_size)

        # CMAC
        for cipher_name, module, key_size in (("AES128", AES, 16),):
            self.test_cmac_small(cipher_name+"-CMAC", CMAC.new, module, key_size)
            self.test_cmac_large(cipher_name+"-CMAC", CMAC.new, module, key_size)

        # PKCS1_v1_5 (sign) + Crypto.Hash
        for hash_name, module in hash_specs:
            self.test_pkcs1_sign("PKCS#1-v1.5", RSASSA_PKCS1_v1_5.new, hash_name, module.new, module.digest_size)

        # PKCS1_PSS (sign) + Crypto.Hash
        for hash_name, module in hash_specs:
            self.test_pkcs1_sign("PKCS#1-PSS", PKCS1_PSS.new, hash_name, module.new, module.digest_size)

        # PKCS1_v1_5 (verify) + Crypto.Hash
        for hash_name, module in hash_specs:
            self.test_pkcs1_verify("PKCS#1-v1.5", RSASSA_PKCS1_v1_5.new, hash_name, module.new, module.digest_size)

        # PKCS1_PSS (verify) + Crypto.Hash
        for hash_name, module in hash_specs:
            self.test_pkcs1_verify("PKCS#1-PSS", PKCS1_PSS.new, hash_name, module.new, module.digest_size)

if __name__ == '__main__':
    Benchmark().run()

# vim:set ts=4 sw=4 sts=4 expandtab: