summaryrefslogtreecommitdiff
path: root/doc/readline.info-1
blob: 78bbd057ad2f66e857edbde8917d9b4828dfd963 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
This is Info file readline.info, produced by Makeinfo-1.55 from the
input file rlman.texinfo.

   This document describes the GNU Readline Library, a utility which
aids in the consistency of user interface across discrete programs that
need to provide a command line interface.

   Copyright (C) 1988, 1991 Free Software Foundation, Inc.

   Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice pare
preserved on all copies.

   Permission is granted to copy and distribute modified versions of
this manual under the conditions for verbatim copying, provided that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

   Permission is granted to copy and distribute translations of this
manual into another language, under the above conditions for modified
versions, except that this permission notice may be stated in a
translation approved by the Foundation.


File: readline.info,  Node: Top,  Next: Command Line Editing,  Prev: (DIR),  Up: (DIR)

GNU Readline Library
********************

   This document describes the GNU Readline Library, a utility which
aids in the consistency of user interface across discrete programs that
need to provide a command line interface.

* Menu:

* Command Line Editing::	   GNU Readline User's Manual.
* Programming with GNU Readline::  GNU Readline Programmer's Manual.
* Concept Index::		   Index of concepts described in this manual.
* Function and Variable Index::	   Index of externally visible functions
				   and variables.


File: readline.info,  Node: Command Line Editing,  Next: Programming with GNU Readline,  Prev: Top,  Up: Top

Command Line Editing
********************

   This chapter describes the basic features of the GNU command line
editing interface.

* Menu:

* Introduction and Notation::	Notation used in this text.
* Readline Interaction::	The minimum set of commands for editing a line.
* Readline Init File::		Customizing Readline from a user's view.
* Bindable Readline Commands::	A description of most of the Readline commands
				available for binding
* Readline vi Mode::		A short description of how to make Readline
				behave like the vi editor.


File: readline.info,  Node: Introduction and Notation,  Next: Readline Interaction,  Up: Command Line Editing

Introduction to Line Editing
============================

   The following paragraphs describe the notation used to represent
keystrokes.

   The text C-k is read as `Control-K' and describes the character
produced when the Control key is depressed and the k key is struck.

   The text M-k is read as `Meta-K' and describes the character
produced when the meta key (if you have one) is depressed, and the k
key is struck.  If you do not have a meta key, the identical keystroke
can be generated by typing ESC first, and then typing k.  Either
process is known as "metafying" the k key.

   The text M-C-k is read as `Meta-Control-k' and describes the
character produced by "metafying" C-k.

   In addition, several keys have their own names.  Specifically, DEL,
ESC, LFD, SPC, RET, and TAB all stand for themselves when seen in this
text, or in an init file (*note Readline Init File::., for more info).


File: readline.info,  Node: Readline Interaction,  Next: Readline Init File,  Prev: Introduction and Notation,  Up: Command Line Editing

Readline Interaction
====================

   Often during an interactive session you type in a long line of text,
only to notice that the first word on the line is misspelled.  The
Readline library gives you a set of commands for manipulating the text
as you type it in, allowing you to just fix your typo, and not forcing
you to retype the majority of the line.  Using these editing commands,
you move the cursor to the place that needs correction, and delete or
insert the text of the corrections.  Then, when you are satisfied with
the line, you simply press RETURN.  You do not have to be at the end of
the line to press RETURN; the entire line is accepted regardless of the
location of the cursor within the line.

* Menu:

* Readline Bare Essentials::	The least you need to know about Readline.
* Readline Movement Commands::	Moving about the input line.
* Readline Killing Commands::	How to delete text, and how to get it back!
* Readline Arguments::		Giving numeric arguments to commands.


File: readline.info,  Node: Readline Bare Essentials,  Next: Readline Movement Commands,  Up: Readline Interaction

Readline Bare Essentials
------------------------

   In order to enter characters into the line, simply type them.  The
typed character appears where the cursor was, and then the cursor moves
one space to the right.  If you mistype a character, you can use your
erase character to back up and delete the mistyped character.

   Sometimes you may miss typing a character that you wanted to type,
and not notice your error until you have typed several other
characters.  In that case, you can type C-b to move the cursor to the
left, and then correct your mistake.  Afterwards, you can move the
cursor to the right with C-f.

   When you add text in the middle of a line, you will notice that
characters to the right of the cursor are `pushed over' to make room
for the text that you have inserted.  Likewise, when you delete text
behind the cursor, characters to the right of the cursor are `pulled
back' to fill in the blank space created by the removal of the text.  A
list of the basic bare essentials for editing the text of an input line
follows.

C-b
     Move back one character.

C-f
     Move forward one character.

DEL
     Delete the character to the left of the cursor.

C-d
     Delete the character underneath the cursor.

Printing characters
     Insert the character into the line at the cursor.

C-_
     Undo the last thing that you did.  You can undo all the way back
     to an empty line.


File: readline.info,  Node: Readline Movement Commands,  Next: Readline Killing Commands,  Prev: Readline Bare Essentials,  Up: Readline Interaction

Readline Movement Commands
--------------------------

   The above table describes the most basic possible keystrokes that
you need in order to do editing of the input line.  For your
convenience, many other commands have been added in addition to C-b,
C-f, C-d, and DEL.  Here are some commands for moving more rapidly
about the line.

C-a
     Move to the start of the line.

C-e
     Move to the end of the line.

M-f
     Move forward a word.

M-b
     Move backward a word.

C-l
     Clear the screen, reprinting the current line at the top.

   Notice how C-f moves forward a character, while M-f moves forward a
word.  It is a loose convention that control keystrokes operate on
characters while meta keystrokes operate on words.


File: readline.info,  Node: Readline Killing Commands,  Next: Readline Arguments,  Prev: Readline Movement Commands,  Up: Readline Interaction

Readline Killing Commands
-------------------------

   "Killing" text means to delete the text from the line, but to save
it away for later use, usually by "yanking" (re-inserting) it back into
the line.  If the description for a command says that it `kills' text,
then you can be sure that you can get the text back in a different (or
the same) place later.

   When you use a kill command, the text is saved in a "kill-ring".
Any number of consecutive kills save all of the killed text together, so
that when you yank it back, you get it all.  The kill ring is not line
specific; the text that you killed on a previously typed line is
available to be yanked back later, when you are typing another line.

   Here is the list of commands for killing text.

C-k
     Kill the text from the current cursor position to the end of the
     line.

M-d
     Kill from the cursor to the end of the current word, or if between
     words, to the end of the next word.

M-DEL
     Kill from the cursor the start of the previous word, or if between
     words, to the start of the previous word.

C-w
     Kill from the cursor to the previous whitespace.  This is
     different than M-DEL because the word boundaries differ.

   And, here is how to "yank" the text back into the line.  Yanking
means to copy the most-recently-killed text from the kill buffer.

C-y
     Yank the most recently killed text back into the buffer at the
     cursor.

M-y
     Rotate the kill-ring, and yank the new top.  You can only do this
     if the prior command is C-y or M-y.


File: readline.info,  Node: Readline Arguments,  Prev: Readline Killing Commands,  Up: Readline Interaction

Readline Arguments
------------------

   You can pass numeric arguments to Readline commands.  Sometimes the
argument acts as a repeat count, other times it is the sign of the
argument that is significant.  If you pass a negative argument to a
command which normally acts in a forward direction, that command will
act in a backward direction.  For example, to kill text back to the
start of the line, you might type M- C-k.

   The general way to pass numeric arguments to a command is to type
meta digits before the command.  If the first `digit' you type is a
minus sign (-), then the sign of the argument will be negative.  Once
you have typed one meta digit to get the argument started, you can type
the remainder of the digits, and then the command.  For example, to give
the C-d command an argument of 10, you could type M-1 0 C-d.


File: readline.info,  Node: Readline Init File,  Next: Bindable Readline Commands,  Prev: Readline Interaction,  Up: Command Line Editing

Readline Init File
==================

   Although the Readline library comes with a set of Emacs-like
keybindings installed by default, it is possible that you would like to
use a different set of keybindings.  You can customize programs that
use Readline by putting commands in an "init" file in your home
directory.  The name of this file is taken from the value of the
environment variable `INPUTRC'.  If that variable is unset, the default
is `~/.inputrc'.

   When a program which uses the Readline library starts up, the init
file is read, and the key bindings are set.

   In addition, the `C-x C-r' command re-reads this init file, thus
incorporating any changes that you might have made to it.

* Menu:

* Readline Init Syntax::	Syntax for the commands in the inputrc file.
* Conditional Init Constructs::	Conditional key bindings in the inputrc file.


File: readline.info,  Node: Readline Init Syntax,  Next: Conditional Init Constructs,  Up: Readline Init File

Readline Init Syntax
--------------------

   There are only a few basic constructs allowed in the Readline init
file.  Blank lines are ignored.  Lines beginning with a # are comments.
Lines beginning with a $ indicate conditional constructs (*note
Conditional Init Constructs::.).  Other lines denote variable settings
and key bindings.

Variable Settings
     You can change the state of a few variables in Readline by using
     the `set' command within the init file.  Here is how you would
     specify that you wish to use `vi' line editing commands:

          set editing-mode vi

     Right now, there are only a few variables which can be set; so
     few, in fact, that we just list them here:

    `editing-mode'
          The `editing-mode' variable controls which editing mode you
          are using.  By default, Readline starts up in Emacs editing
          mode, where the keystrokes are most similar to Emacs.  This
          variable can be set to either `emacs' or `vi'.

    `horizontal-scroll-mode'
          This variable can be set to either `On' or `Off'.  Setting it
          to `On' means that the text of the lines that you edit will
          scroll horizontally on a single screen line when they are
          longer than the width of the screen, instead of wrapping onto
          a new screen line.  By default, this variable is set to `Off'.

    `mark-modified-lines'
          This variable, when set to `On', says to display an asterisk
          (`*') at the start of history lines which have been modified.
          This variable is `off' by default.

    `bell-style'
          Controls what happens when Readline wants to ring the
          terminal bell.  If set to `none', Readline never rings the
          bell.  If set to `visible', Readline uses a visible bell if
          one is available.  If set to `audible' (the default),
          Readline attempts to ring the terminal's bell.

    `comment-begin'
          The string to insert at the beginning of the line when the
          `vi-comment' command is executed.  The default value is `"#"'.

    `meta-flag'
          If set to `on', Readline will enable eight-bit input (it will
          not strip the eighth bit from the characters it reads),
          regardless of what the terminal claims it can support.  The
          default value is `off'.

    `convert-meta'
          If set to `on', Readline will convert characters with the
          eigth bit set to an ASCII key sequence by stripping the eigth
          bit and prepending an ESC character, converting them to a
          meta-prefixed key sequence.  The default value is `on'.

    `output-meta'
          If set to `on', Readline will display characters with the
          eighth bit set directly rather than as a meta-prefixed escape
          sequence.  The default is `off'.

    `completion-query-items'
          The number of possible completions that determines when the
          user is asked whether he wants to see the list of
          possibilities.  If the number of possible completions is
          greater than this value, Readline will ask the user whether
          or not he wishes to view them; otherwise, they are simply
          listed.  The default limit is `100'.

    `keymap'
          Sets Readline's idea of the current keymap for key binding
          commands.  Acceptable `keymap' names are `emacs',
          `emacs-standard', `emacs-meta', `emacs-ctlx', `vi', `vi-move',
          `vi-command', and `vi-insert'.  `vi' is equivalent to
          `vi-command'; `emacs' is equivalent to `emacs-standard'.  The
          default value is `emacs'.  The value of the `editing-mode'
          variable also affects the default keymap.

    `show-all-if-ambiguous'
          This alters the default behavior of the completion functions.
          If set to `on', words which have more than one possible
          completion cause the matches to be listed immediately instead
          of ringing the bell.  The default value is `off'.

    `expand-tilde'
          If set to `on', tilde expansion is performed when Readline
          attempts word completion.  The default is `off'.

Key Bindings
     The syntax for controlling key bindings in the init file is
     simple.  First you have to know the name of the command that you
     want to change.  The following pages contain tables of the command
     name, the default keybinding, and a short description of what the
     command does.

     Once you know the name of the command, simply place the name of
     the key you wish to bind the command to, a colon, and then the
     name of the command on a line in the init file.  The name of the
     key can be expressed in different ways, depending on which is most
     comfortable for you.

    KEYNAME: FUNCTION-NAME or MACRO
          KEYNAME is the name of a key spelled out in English.  For
          example:
               Control-u: universal-argument
               Meta-Rubout: backward-kill-word
               Control-o: ">&output"

          In the above example, `C-u' is bound to the function
          `universal-argument', and `C-o' is bound to run the macro
          expressed on the right hand side (that is, to insert the text
          `>&output' into the line).

    "KEYSEQ": FUNCTION-NAME or MACRO
          KEYSEQ differs from KEYNAME above in that strings denoting an
          entire key sequence can be specified, by placing the key
          sequence in double quotes.  Some GNU Emacs style key escapes
          can be used, as in the following example, but the special
          character names are not recognized.

               "\C-u": universal-argument
               "\C-x\C-r": re-read-init-file
               "\e[11~": "Function Key 1"

          In the above example, `C-u' is bound to the function
          `universal-argument' (just as it was in the first example),
          `C-x C-r' is bound to the function `re-read-init-file', and
          `ESC [ 1 1 ~' is bound to insert the text `Function Key 1'.
          The following escape sequences are available when specifying
          key sequences:

         ``\C-''
               control prefix

         ``\M-''
               meta prefix

         ``\e''
               an escape character

         ``\\''
               backslash

         ``\"''
               "

         ``\'''
               '

          When entering the text of a macro, single or double quotes
          should be used to indicate a macro definition.  Unquoted text
          is assumed to be a function name.  Backslash will quote any
          character in the macro text, including " and '.  For example,
          the following binding will make `C-x \' insert a single \
          into the line:
               "\C-x\\": "\\"


File: readline.info,  Node: Conditional Init Constructs,  Prev: Readline Init Syntax,  Up: Readline Init File

Conditional Init Constructs
---------------------------

   Readline implements a facility similar in spirit to the conditional
compilation features of the C preprocessor which allows key bindings
and variable settings to be performed as the result of tests.  There
are three parser directives used.

`$if'
     The `$if' construct allows bindings to be made based on the
     editing mode, the terminal being used, or the application using
     Readline.  The text of the test extends to the end of the line; no
     characters are required to isolate it.

    `mode'
          The `mode=' form of the `$if' directive is used to test
          whether Readline is in `emacs' or `vi' mode.  This may be
          used in conjunction with the `set keymap' command, for
          instance, to set bindings in the `emacs-standard' and
          `emacs-ctlx' keymaps only if Readline is starting out in
          `emacs' mode.

    `term'
          The `term=' form may be used to include terminal-specific key
          bindings, perhaps to bind the key sequences output by the
          terminal's function keys.  The word on the right side of the
          `=' is tested against the full name of the terminal and the
          portion of the terminal name before the first `-'.  This
          allows SUN to match both SUN and SUN-CMD, for instance.

    `application'
          The APPLICATION construct is used to include
          application-specific settings.  Each program using the
          Readline library sets the APPLICATION NAME, and you can test
          for it.  This could be used to bind key sequences to
          functions useful for a specific program.  For instance, the
          following command adds a key sequence that quotes the current
          or previous word in Bash:
               $if bash
               # Quote the current or previous word
               "\C-xq": "\eb\"\ef\""
               $endif

`$endif'
     This command, as you saw in the previous example, terminates an
     `$if' command.

`$else'
     Commands in this branch of the `$if' directive are executed if the
     test fails.


File: readline.info,  Node: Bindable Readline Commands,  Next: Readline vi Mode,  Prev: Readline Init File,  Up: Command Line Editing

Bindable Readline Commands
==========================

* Menu:

* Commands For Moving::		Moving about the line.
* Commands For History::	Getting at previous lines.
* Commands For Text::		Commands for changing text.
* Commands For Killing::	Commands for killing and yanking.
* Numeric Arguments::		Specifying numeric arguments, repeat counts.
* Commands For Completion::	Getting Readline to do the typing for you.
* Keyboard Macros::		Saving and re-executing typed characters
* Miscellaneous Commands::	Other miscellaneous commands.


File: readline.info,  Node: Commands For Moving,  Next: Commands For History,  Up: Bindable Readline Commands

Commands For Moving
-------------------

`beginning-of-line (C-a)'
     Move to the start of the current line.

`end-of-line (C-e)'
     Move to the end of the line.

`forward-char (C-f)'
     Move forward a character.

`backward-char (C-b)'
     Move back a character.

`forward-word (M-f)'
     Move forward to the end of the next word.  Words are composed of
     letters and digits.

`backward-word (M-b)'
     Move back to the start of this, or the previous, word.  Words are
     composed of letters and digits.

`clear-screen (C-l)'
     Clear the screen and redraw the current line, leaving the current
     line at the top of the screen.

`redraw-current-line ()'
     Refresh the current line.  By default, this is unbound.


File: readline.info,  Node: Commands For History,  Next: Commands For Text,  Prev: Commands For Moving,  Up: Bindable Readline Commands

Commands For Manipulating The History
-------------------------------------

`accept-line (Newline, Return)'
     Accept the line regardless of where the cursor is.  If this line is
     non-empty, add it to the history list.  If this line was a history
     line, then restore the history line to its original state.

`previous-history (C-p)'
     Move `up' through the history list.

`next-history (C-n)'
     Move `down' through the history list.

`beginning-of-history (M-<)'
     Move to the first line in the history.

`end-of-history (M->)'
     Move to the end of the input history, i.e., the line you are
     entering.

`reverse-search-history (C-r)'
     Search backward starting at the current line and moving `up'
     through the history as necessary.  This is an incremental search.

`forward-search-history (C-s)'
     Search forward starting at the current line and moving `down'
     through the the history as necessary.  This is an incremental
     search.

`non-incremental-reverse-search-history (M-p)'
     Search backward starting at the current line and moving `up'
     through the history as necessary using a non-incremental search
     for a string supplied by the user.

`non-incremental-forward-search-history (M-n)'
     Search forward starting at the current line and moving `down'
     through the the history as necessary using a non-incremental search
     for a string supplied by the user.

`history-search-forward ()'
     Search forward through the history for the string of characters
     between the start of the current line and the current point.  This
     is a non-incremental search.  By default, this command is unbound.

`history-search-backward ()'
     Search backward through the history for the string of characters
     between the start of the current line and the current point.  This
     is a non-incremental search.  By default, this command is unbound.

`yank-nth-arg (M-C-y)'
     Insert the first argument to the previous command (usually the
     second word on the previous line).  With an argument N, insert the
     Nth word from the previous command (the words in the previous
     command begin with word 0).  A negative argument inserts the Nth
     word from the end of the previous command.

`yank-last-arg (M-., M-_)'
     Insert last argument to the previous command (the last word on the
     previous line).  With an argument, behave exactly like
     `yank-nth-arg'.


File: readline.info,  Node: Commands For Text,  Next: Commands For Killing,  Prev: Commands For History,  Up: Bindable Readline Commands

Commands For Changing Text
--------------------------

`delete-char (C-d)'
     Delete the character under the cursor.  If the cursor is at the
     beginning of the line, there are no characters in the line, and
     the last character typed was not C-d, then return EOF.

`backward-delete-char (Rubout)'
     Delete the character behind the cursor.  A numeric arg says to kill
     the characters instead of deleting them.

`quoted-insert (C-q, C-v)'
     Add the next character that you type to the line verbatim.  This is
     how to insert key sequences like C-q, for example.

`tab-insert (M-TAB)'
     Insert a tab character.

`self-insert (a, b, A, 1, !, ...)'
     Insert yourself.

`transpose-chars (C-t)'
     Drag the character before the cursor forward over the character at
     the cursor, moving the cursor forward as well.  If the insertion
     point is at the end of the line, then this transposes the last two
     characters of the line.  Negative argumentss don't work.

`transpose-words (M-t)'
     Drag the word behind the cursor past the word in front of the
     cursor moving the cursor over that word as well.

`upcase-word (M-u)'
     Uppercase the current (or following) word.  With a negative
     argument, do the previous word, but do not move the cursor.

`downcase-word (M-l)'
     Lowercase the current (or following) word.  With a negative
     argument, do the previous word, but do not move the cursor.

`capitalize-word (M-c)'
     Capitalize the current (or following) word.  With a negative
     argument, do the previous word, but do not move the cursor.


File: readline.info,  Node: Commands For Killing,  Next: Numeric Arguments,  Prev: Commands For Text,  Up: Bindable Readline Commands

Killing And Yanking
-------------------

`kill-line (C-k)'
     Kill the text from the current cursor position to the end of the
     line.

`backward-kill-line (C-x Rubout)'
     Kill backward to the beginning of the line.

`unix-line-discard (C-u)'
     Kill backward from the cursor to the beginning of the current line.
     Save the killed text on the kill-ring.

`kill-whole-line ()'
     Kill all characters on the current line, no matter where the
     cursor is.  By default, this is unbound.

`kill-word (M-d)'
     Kill from the cursor to the end of the current word, or if between
     words, to the end of the next word.  Word boundaries are the same
     as `forward-word'.

`backward-kill-word (M-DEL)'
     Kill the word behind the cursor.  Word boundaries are the same as
     `backward-word'.

`unix-word-rubout (C-w)'
     Kill the word behind the cursor, using white space as a word
     boundary.  The killed text is saved on the kill-ring.

`delete-horizontal-space ()'
     Delete all spaces and tabs around point.  By default, this is
     unbound.

`yank (C-y)'
     Yank the top of the kill ring into the buffer at the current
     cursor position.

`yank-pop (M-y)'
     Rotate the kill-ring, and yank the new top.  You can only do this
     if the prior command is yank or yank-pop.


File: readline.info,  Node: Numeric Arguments,  Next: Commands For Completion,  Prev: Commands For Killing,  Up: Bindable Readline Commands

Specifying Numeric Arguments
----------------------------

`digit-argument (M-0, M-1, ... M--)'
     Add this digit to the argument already accumulating, or start a new
     argument.  M- starts a negative argument.

`universal-argument ()'
     Each time this is executed, the argument count is multiplied by
     four.  The argument count is initially one, so executing this
     function the first time makes the argument count four.  By
     default, this is not bound to a key.


File: readline.info,  Node: Commands For Completion,  Next: Keyboard Macros,  Prev: Numeric Arguments,  Up: Bindable Readline Commands

Letting Readline Type For You
-----------------------------

`complete (TAB)'
     Attempt to do completion on the text before the cursor.  This is
     application-specific.  Generally, if you are typing a filename
     argument, you can do filename completion; if you are typing a
     command, you can do command completion, if you are typing in a
     symbol to GDB, you can do symbol name completion, if you are
     typing in a variable to Bash, you can do variable name completion,
     and so on.

`possible-completions (M-?)'
     List the possible completions of the text before the cursor.

`insert-completions ()'
     Insert all completions of the text before point that would have
     been generated by `possible-completions'.  By default, this is not
     bound to a key.


File: readline.info,  Node: Keyboard Macros,  Next: Miscellaneous Commands,  Prev: Commands For Completion,  Up: Bindable Readline Commands

Keyboard Macros
---------------

`start-kbd-macro (C-x ()'
     Begin saving the characters typed into the current keyboard macro.

`end-kbd-macro (C-x ))'
     Stop saving the characters typed into the current keyboard macro
     and save the definition.

`call-last-kbd-macro (C-x e)'
     Re-execute the last keyboard macro defined, by making the
     characters in the macro appear as if typed at the keyboard.


File: readline.info,  Node: Miscellaneous Commands,  Prev: Keyboard Macros,  Up: Bindable Readline Commands

Some Miscellaneous Commands
---------------------------

`re-read-init-file (C-x C-r)'
     Read in the contents of your init file, and incorporate any
     bindings or variable assignments found there.

`abort (C-g)'
     Abort the current editing command and ring the terminal's bell
     (subject to the setting of `bell-style').

`do-uppercase-version (M-a, M-b, ...)'
     Run the command that is bound to the corresoponding uppercase
     character.

`prefix-meta (ESC)'
     Make the next character that you type be metafied.  This is for
     people without a meta key.  Typing `ESC f' is equivalent to typing
     `M-f'.

`undo (C-_, C-x C-u)'
     Incremental undo, separately remembered for each line.

`revert-line (M-r)'
     Undo all changes made to this line.  This is like typing the `undo'
     command enough times to get back to the beginning.

`tilde-expand (M-~)'
     Perform tilde expansion on the current word.

`dump-functions ()'
     Print all of the functions and their key bindings to the readline
     output stream.  If a numeric argument is supplied, the output is
     formatted in such a way that it can be made part of an INPUTRC
     file.


File: readline.info,  Node: Readline vi Mode,  Prev: Bindable Readline Commands,  Up: Command Line Editing

Readline vi Mode
================

   While the Readline library does not have a full set of `vi' editing
functions, it does contain enough to allow simple editing of the line.
The Readline `vi' mode behaves as specified in the Posix 1003.2
standard.

   In order to switch interactively between `Emacs' and `Vi' editing
modes, use the command M-C-j (toggle-editing-mode).  The Readline
default is `emacs' mode.

   When you enter a line in `vi' mode, you are already placed in
`insertion' mode, as if you had typed an `i'.  Pressing ESC switches
you into `command' mode, where you can edit the text of the line with
the standard `vi' movement keys, move to previous history lines with
`k', and following lines with `j', and so forth.

   This document describes the GNU Readline Library, a utility for
aiding in the consitency of user interface across discrete programs
that need to provide a command line interface.

   Copyright (C) 1988, 1994 Free Software Foundation, Inc.

   Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice pare
preserved on all copies.

   Permission is granted to copy and distribute modified versions of
this manual under the conditions for verbatim copying, provided that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

   Permission is granted to copy and distribute translations of this
manual into another language, under the above conditions for modified
versions, except that this permission notice may be stated in a
translation approved by the Foundation.


File: readline.info,  Node: Programming with GNU Readline,  Next: Concept Index,  Prev: Command Line Editing,  Up: Top

Programming with GNU Readline
*****************************

   This chapter describes the interface between the GNU Readline
Library and other programs.  If you are a programmer, and you wish to
include the features found in GNU Readline such as completion, line
editing, and interactive history manipulation in your own programs,
this section is for you.

* Menu:

* Basic Behavior::	Using the default behavior of Readline.
* Custom Functions::	Adding your own functions to Readline.
* Readline Convenience Functions::	Functions which Readline supplies to
					aid in writing your own
* Custom Completers::	Supplanting or supplementing Readline's
			completion functions.


File: readline.info,  Node: Basic Behavior,  Next: Custom Functions,  Up: Programming with GNU Readline

Basic Behavior
==============

   Many programs provide a command line interface, such as `mail',
`ftp', and `sh'.  For such programs, the default behaviour of Readline
is sufficient.  This section describes how to use Readline in the
simplest way possible, perhaps to replace calls in your code to
`gets()' or `fgets ()'.

   The function `readline ()' prints a prompt and then reads and returns
a single line of text from the user.  The line `readline' returns is
allocated with `malloc ()'; you should `free ()' the line when you are
done with it.  The declaration for `readline' in ANSI C is

     `char *readline (char *PROMPT);'

So, one might say
     `char *line = readline ("Enter a line: ");'

in order to read a line of text from the user.  The line returned has
the final newline removed, so only the text remains.

   If `readline' encounters an `EOF' while reading the line, and the
line is empty at that point, then `(char *)NULL' is returned.
Otherwise, the line is ended just as if a newline had been typed.

   If you want the user to be able to get at the line later, (with C-p
for example), you must call `add_history ()' to save the line away in a
"history" list of such lines.

     `add_history (line)';

For full details on the GNU History Library, see the associated manual.

   It is preferable to avoid saving empty lines on the history list,
since users rarely have a burning need to reuse a blank line.  Here is
a function which usefully replaces the standard `gets ()' library
function, and has the advantage of no static buffer to overflow:

     /* A static variable for holding the line. */
     static char *line_read = (char *)NULL;
     
     /* Read a string, and return a pointer to it.  Returns NULL on EOF. */
     char *
     rl_gets ()
     {
       /* If the buffer has already been allocated, return the memory
          to the free pool. */
       if (line_read)
         {
           free (line_read);
           line_read = (char *)NULL;
         }
     
       /* Get a line from the user. */
       line_read = readline ("");
     
       /* If the line has any text in it, save it on the history. */
       if (line_read && *line_read)
         add_history (line_read);
     
       return (line_read);
     }

   This function gives the user the default behaviour of TAB
completion: completion on file names.  If you do not want Readline to
complete on filenames, you can change the binding of the TAB key with
`rl_bind_key ()'.

     `int rl_bind_key (int KEY, int (*FUNCTION)());'

   `rl_bind_key ()' takes two arguments: KEY is the character that you
want to bind, and FUNCTION is the address of the function to call when
KEY is pressed.  Binding TAB to `rl_insert ()' makes TAB insert itself.
`rl_bind_key ()' returns non-zero if KEY is not a valid ASCII character
code (between 0 and 255).

   Thus, to disable the default TAB behavior, the following suffices:
     `rl_bind_key ('\t', rl_insert);'

   This code should be executed once at the start of your program; you
might write a function called `initialize_readline ()' which performs
this and other desired initializations, such as installing custom
completers (*note Custom Completers::.).


File: readline.info,  Node: Custom Functions,  Next: Readline Convenience Functions,  Prev: Basic Behavior,  Up: Programming with GNU Readline

Custom Functions
================

   Readline provides many functions for manipulating the text of the
line, but it isn't possible to anticipate the needs of all programs.
This section describes the various functions and variables defined
within the Readline library which allow a user program to add
customized functionality to Readline.

* Menu:

* The Function Type::	C declarations to make code readable.
* Function Writing::	Variables and calling conventions.


File: readline.info,  Node: The Function Type,  Next: Function Writing,  Up: Custom Functions

The Function Type
-----------------

   For readabilty, we declare a new type of object, called "Function".
A `Function' is a C function which returns an `int'.  The type
declaration for `Function' is:

`typedef int Function ();'

   The reason for declaring this new type is to make it easier to write
code describing pointers to C functions.  Let us say we had a variable
called FUNC which was a pointer to a function.  Instead of the classic
C declaration

   `int (*)()func;'

we may write

   `Function *func;'

Similarly, there are

     typedef void VFunction ();
     typedef char *CPFunction (); and
     typedef char **CPPFunction ();

for functions returning no value, `pointer to char', and `pointer to
pointer to char', respectively.


File: readline.info,  Node: Function Writing,  Prev: The Function Type,  Up: Custom Functions

Writing a New Function
----------------------

   In order to write new functions for Readline, you need to know the
calling conventions for keyboard-invoked functions, and the names of the
variables that describe the current state of the line read so far.

   The calling sequence for a command `foo' looks like

     `foo (int count, int key)'

where COUNT is the numeric argument (or 1 if defaulted) and KEY is the
key that invoked this function.

   It is completely up to the function as to what should be done with
the numeric argument.  Some functions use it as a repeat count, some as
a flag, and others to choose alternate behavior (refreshing the current
line as opposed to refreshing the screen, for example).  Some choose to
ignore it.  In general, if a function uses the numeric argument as a
repeat count, it should be able to do something useful with both
negative and positive arguments.  At the very least, it should be aware
that it can be passed a negative argument.

 - Variable: char * rl_line_buffer
     This is the line gathered so far.  You are welcome to modify the
     contents of the line, but see *Note Allowing Undoing::.

 - Variable: int rl_point
     The offset of the current cursor position in `rl_line_buffer' (the
     *point*).

 - Variable: int rl_end
     The number of characters present in `rl_line_buffer'.  When
     `rl_point' is at the end of the line, `rl_point' and `rl_end' are
     equal.

 - Variable: int rl_mark
     The mark (saved position) in the current line.  If set, the mark
     and point define a *region*.

 - Variable: int rl_done
     Setting this to a non-zero value causes Readline to return the
     current line immediately.

 - Variable: int rl_pending_input
     Setting this to a value makes it the next keystroke read.  This is
     a way to stuff a single character into the input stream.

 - Variable: char * rl_prompt
     The prompt Readline uses.  This is set from the argument to
     `readline ()', and should not be assigned to directly.

 - Variable: char * rl_terminal_name
     The terminal type, used for initialization.

 - Variable: char * rl_readline_name
     This variable is set to a unique name by each application using
     Readline.  The value allows conditional parsing of the inputrc file
     (*note Conditional Init Constructs::.).

 - Variable: FILE * rl_instream
     The stdio stream from which Readline reads input.

 - Variable: FILE * rl_outstream
     The stdio stream to which Readline performs output.

 - Variable: Function * rl_startup_hook
     If non-zero, this is the address of a function to call just before
     `readline' prints the first prompt.


File: readline.info,  Node: Readline Convenience Functions,  Next: Custom Completers,  Prev: Custom Functions,  Up: Programming with GNU Readline

Readline Convenience Functions
==============================

* Menu:

* Function Naming::	How to give a function you write a name.
* Keymaps::		Making keymaps.
* Binding Keys::	Changing Keymaps.
* Associating Function Names and Bindings::	Translate function names to
						key sequences.
* Allowing Undoing::	How to make your functions undoable.
* Redisplay::		Functions to control line display.
* Modifying Text::	Functions to modify `rl_line_buffer'.
* Utility Functions::	Generally useful functions and hooks.


File: readline.info,  Node: Function Naming,  Next: Keymaps,  Up: Readline Convenience Functions

Naming a Function
-----------------

   The user can dynamically change the bindings of keys while using
Readline.  This is done by representing the function with a descriptive
name.  The user is able to type the descriptive name when referring to
the function.  Thus, in an init file, one might find

     Meta-Rubout:	backward-kill-word

   This binds the keystroke Meta-Rubout to the function *descriptively*
named `backward-kill-word'.  You, as the programmer, should bind the
functions you write to descriptive names as well.  Readline provides a
function for doing that:

 - Function: int rl_add_defun (char *name, Function *function, int key)
     Add NAME to the list of named functions.  Make FUNCTION be the
     function that gets called.  If KEY is not -1, then bind it to
     FUNCTION using `rl_bind_key ()'.

   Using this function alone is sufficient for most applications.  It is
the recommended way to add a few functions to the default functions that
Readline has built in.  If you need to do something other than adding a
function to Readline, you may need to use the underlying functions
described below.


File: readline.info,  Node: Keymaps,  Next: Binding Keys,  Prev: Function Naming,  Up: Readline Convenience Functions

Selecting a Keymap
------------------

   Key bindings take place on a "keymap".  The keymap is the
association between the keys that the user types and the functions that
get run.  You can make your own keymaps, copy existing keymaps, and tell
Readline which keymap to use.

 - Function: Keymap rl_make_bare_keymap ()
     Returns a new, empty keymap.  The space for the keymap is
     allocated with `malloc ()'; you should `free ()' it when you are
     done.

 - Function: Keymap rl_copy_keymap (Keymap map)
     Return a new keymap which is a copy of MAP.

 - Function: Keymap rl_make_keymap ()
     Return a new keymap with the printing characters bound to
     rl_insert, the lowercase Meta characters bound to run their
     equivalents, and the Meta digits bound to produce numeric
     arguments.

 - Function: void rl_discard_keymap (Keymap keymap)
     Free the storage associated with KEYMAP.

   Readline has several internal keymaps.  These functions allow you to
change which keymap is active.

 - Function: Keymap rl_get_keymap ()
     Returns the currently active keymap.

 - Function: void rl_set_keymap (Keymap keymap)
     Makes KEYMAP the currently active keymap.

 - Function: Keymap rl_get_keymap_by_name (char *name)
     Return the keymap matching NAME.  NAME is one which would be
     supplied in a `set keymap' inputrc line (*note Readline Init
     File::.).


File: readline.info,  Node: Binding Keys,  Next: Associating Function Names and Bindings,  Prev: Keymaps,  Up: Readline Convenience Functions

Binding Keys
------------

   You associate keys with functions through the keymap.  Readline has
several internal keymaps: `emacs_standard_keymap', `emacs_meta_keymap',
`emacs_ctlx_keymap', `vi_movement_keymap', and `vi_insertion_keymap'.
`emacs_standard_keymap' is the default, and the examples in this manual
assume that.

   These functions manage key bindings.

 - Function: int rl_bind_key (int key, Function *function)
     Binds KEY to FUNCTION in the currently active keymap.  Returns
     non-zero in the case of an invalid KEY.

 - Function: int rl_bind_key_in_map (int key, Function *function,
          Keymap map)
     Bind KEY to FUNCTION in MAP.  Returns non-zero in the case of an
     invalid KEY.

 - Function: int rl_unbind_key (int key)
     Bind KEY to the null function in the currently active keymap.
     Returns non-zero in case of error.

 - Function: int rl_unbind_key_in_map (int key, Keymap map)
     Bind KEY to the null function in MAP.  Returns non-zero in case of
     error.

 - Function: int rl_generic_bind (int type, char *keyseq, char *data,
          Keymap map)
     Bind the key sequence represented by the string KEYSEQ to the
     arbitrary pointer DATA.  TYPE says what kind of data is pointed to
     by DATA; this can be a function (`ISFUNC'), a macro (`ISMACR'), or
     a keymap (`ISKMAP').  This makes new keymaps as necessary.  The
     initial keymap in which to do bindings is MAP.

 - Function: int rl_parse_and_bind (char *line)
     Parse LINE as if it had been read from the `inputrc' file and
     perform any key bindings and variable assignments found (*note
     Readline Init File::.).


File: readline.info,  Node: Associating Function Names and Bindings,  Next: Allowing Undoing,  Prev: Binding Keys,  Up: Readline Convenience Functions

Associating Function Names and Bindings
---------------------------------------

   These functions allow you to find out what keys invoke named
functions and the functions invoked by a particular key sequence.

 - Function: Function * rl_named_function (char *name)
     Return the function with name NAME.

 - Function: Function * rl_function_of_keyseq (char *keyseq, Keymap
          map, int *type)
     Return the function invoked by KEYSEQ in keymap MAP.  If MAP is
     NULL, the current keymap is used.  If TYPE is not NULL, the type
     of the object is returned in it (one of `ISFUNC', `ISKMAP', or
     `ISMACR').

 - Function: char ** rl_invoking_keyseqs (Function *function)
     Return an array of strings representing the key sequences used to
     invoke FUNCTION in the current keymap.

 - Function: char ** rl_invoking_keyseqs_in_map (Function *function,
          Keymap map)
     Return an array of strings representing the key sequences used to
     invoke FUNCTION in the keymap MAP.


File: readline.info,  Node: Allowing Undoing,  Next: Redisplay,  Prev: Associating Function Names and Bindings,  Up: Readline Convenience Functions

Allowing Undoing
----------------

   Supporting the undo command is a painless thing, and makes your
functions much more useful.  It is certainly easy to try something if
you know you can undo it.  I could use an undo function for the stock
market.

   If your function simply inserts text once, or deletes text once, and
uses `rl_insert_text ()' or `rl_delete_text ()' to do it, then undoing
is already done for you automatically.

   If you do multiple insertions or multiple deletions, or any
combination of these operations, you should group them together into
one operation.  This is done with `rl_begin_undo_group ()' and
`rl_end_undo_group ()'.

   The types of events that can be undone are:

     enum undo_code { UNDO_DELETE, UNDO_INSERT, UNDO_BEGIN, UNDO_END };

   Notice that `UNDO_DELETE' means to insert some text, and
`UNDO_INSERT' means to delete some text.  That is, the undo code tells
undo what to undo, not how to undo it.  `UNDO_BEGIN' and `UNDO_END' are
tags added by `rl_begin_undo_group ()' and `rl_end_undo_group ()'.

 - Function: int rl_begin_undo_group ()
     Begins saving undo information in a group construct.  The undo
     information usually comes from calls to `rl_insert_text ()' and
     `rl_delete_text ()', but could be the result of calls to
     `rl_add_undo ()'.

 - Function: int rl_end_undo_group ()
     Closes the current undo group started with `rl_begin_undo_group
     ()'.  There should be one call to `rl_end_undo_group ()' for each
     call to `rl_begin_undo_group ()'.

 - Function: void rl_add_undo (enum undo_code what, int start, int end,
          char *text)
     Remember how to undo an event (according to WHAT).  The affected
     text runs from START to END, and encompasses TEXT.

 - Function: void free_undo_list ()
     Free the existing undo list.

 - Function: int rl_do_undo ()
     Undo the first thing on the undo list.  Returns `0' if there was
     nothing to undo, non-zero if something was undone.

   Finally, if you neither insert nor delete text, but directly modify
the existing text (e.g., change its case), call `rl_modifying ()' once,
just before you modify the text.  You must supply the indices of the
text range that you are going to modify.

 - Function: int rl_modifying (int start, int end)
     Tell Readline to save the text between START and END as a single
     undo unit.  It is assumed that you will subsequently modify that
     text.


File: readline.info,  Node: Redisplay,  Next: Modifying Text,  Prev: Allowing Undoing,  Up: Readline Convenience Functions

Redisplay
---------

 - Function: int rl_redisplay ()
     Change what's displayed on the screen to reflect the current
     contents of `rl_line_buffer'.

 - Function: int rl_forced_update_display ()
     Force the line to be updated and redisplayed, whether or not
     Readline thinks the screen display is correct.

 - Function: int rl_on_new_line ()
     Tell the update routines that we have moved onto a new (empty)
     line, usually after ouputting a newline.

 - Function: int rl_reset_line_state ()
     Reset the display state to a clean state and redisplay the current
     line starting on a new line.

 - Function: int rl_message (va_alist)
     The arguments are a string as would be supplied to `printf'.  The
     resulting string is displayed in the "echo area".  The echo area
     is also used to display numeric arguments and search strings.

 - Function: int rl_clear_message ()
     Clear the message in the echo area.